Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs

被引:0
|
作者
Ming Chen
Yusheng Li
Chaoping Pei
机构
[1] Tongji University,School of Mathematical Sciences
[2] Jiaxing University,College of Mathematics Physics and Information Engineering
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Gallai–Ramsey number; Rainbow triangle; Cycle; Bipartite graph;
D O I
暂无
中图分类号
学科分类号
摘要
For graphs G and H and integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(G:H)$$\end{document} is defined to be the minimum integer N such that if KN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_N$$\end{document} is edge-colored with k colors, then there is either a rainbow G or a monochromatic H. It is known that grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} is exponential in k. In this note, we improve the upper bound for grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} obtained by Hall et al., and give bounds for grk(K3:Km,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:K_{m,n})$$\end{document}.
引用
收藏
页码:1185 / 1196
页数:11
相关论文
共 50 条
  • [1] Gallai-Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs
    Chen, Ming
    Li, Yusheng
    Pei, Chaoping
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1185 - 1196
  • [2] Gallai and l-uniform Ramsey numbers of complete bipartite graphs
    Liu, Yuchen
    Chen, Yaojun
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 301 : 131 - 139
  • [3] GALLAI-RAMSEY NUMBERS FOR RAINBOW TREES AND MONOCHROMATIC COMPLETE BIPARTITE GRAPHS
    Li, Luyi
    Li, Xueliang
    Mao, Yaping
    Si, Yuan
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [4] Bipartite Ramsey Numbers of Cycles for Random Graphs
    Liu, Meng
    Li, Yusheng
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2703 - 2711
  • [5] Bipartite Ramsey Numbers of Cycles for Random Graphs
    Meng Liu
    Yusheng Li
    [J]. Graphs and Combinatorics, 2021, 37 : 2703 - 2711
  • [6] MULTICOLOR RAMSEY NUMBERS FOR COMPLETE BIPARTITE GRAPHS
    CHUNG, FRK
    GRAHAM, RL
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) : 164 - 169
  • [7] Ramsey Numbers of Some Bipartite Graphs Versus Complete Graphs
    Jiang, Tao
    Salerno, Michael
    [J]. GRAPHS AND COMBINATORICS, 2011, 27 (01) : 121 - 128
  • [8] Ramsey Numbers of Some Bipartite Graphs Versus Complete Graphs
    Tao Jiang
    Michael Salerno
    [J]. Graphs and Combinatorics, 2011, 27 : 121 - 128
  • [9] Gallai-Ramsey numbers for cycles
    Fujita, Shinya
    Magnant, Colton
    [J]. DISCRETE MATHEMATICS, 2011, 311 (13) : 1247 - 1254
  • [10] Multicolor Ramsey Numbers For Complete Bipartite Versus Complete Graphs
    Lenz, John
    Mubayi, Dhruv
    [J]. JOURNAL OF GRAPH THEORY, 2014, 77 (01) : 19 - 38