Ramsey Numbers of Complete Bipartite Graphs

被引:0
|
作者
Meng Liu [1 ]
Bangwei Du [1 ]
机构
[1] Anhui University,Center of Pure Mathematics, School of Mathematical Sciences
关键词
Ramsey number; Bipartite graph; Asymptotic bound;
D O I
10.1007/s00373-025-02892-y
中图分类号
学科分类号
摘要
Let α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} be a constant and let m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document} be an integer. In this short note, we shall show that R(Km,αn,Km,n)=((α1/m+1)m+o(1))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(K_{m,\alpha n},K_{m,n})=((\alpha ^{1/m}+1)^m+o(1))n$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] MULTICOLOR RAMSEY NUMBERS FOR COMPLETE BIPARTITE GRAPHS
    CHUNG, FRK
    GRAHAM, RL
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) : 164 - 169
  • [2] Ramsey Numbers of Some Bipartite Graphs Versus Complete Graphs
    Tao Jiang
    Michael Salerno
    Graphs and Combinatorics, 2011, 27 : 121 - 128
  • [3] Ramsey Numbers of Some Bipartite Graphs Versus Complete Graphs
    Jiang, Tao
    Salerno, Michael
    GRAPHS AND COMBINATORICS, 2011, 27 (01) : 121 - 128
  • [4] Multicolor Ramsey Numbers For Complete Bipartite Versus Complete Graphs
    Lenz, John
    Mubayi, Dhruv
    JOURNAL OF GRAPH THEORY, 2014, 77 (01) : 19 - 38
  • [5] Bounds on Ramsey Numbers of Certain Complete Bipartite Graphs
    Lortz R.
    Mengersen I.
    Results in Mathematics, 2002, 41 (1-2) : 140 - 149
  • [6] Further Ramsey numbers for small complete bipartite graphs
    Lortz, R
    Mengersen, I
    ARS COMBINATORIA, 2006, 79 : 195 - 203
  • [7] Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs
    Ming Chen
    Yusheng Li
    Chaoping Pei
    Graphs and Combinatorics, 2018, 34 : 1185 - 1196
  • [8] Anti-Ramsey numbers for small complete bipartite graphs
    Axenovich, M
    Jiang, T
    ARS COMBINATORIA, 2004, 73 : 311 - 318
  • [9] Complete Bipartite Ramsey Numbers
    Hasmawati
    Assiyatun, H.
    Baskoro, E. T.
    Salman, A. N. M.
    UTILITAS MATHEMATICA, 2009, 78 : 129 - 138
  • [10] Gallai-Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs
    Chen, Ming
    Li, Yusheng
    Pei, Chaoping
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1185 - 1196