Ramsey Numbers of Complete Bipartite Graphs

被引:0
|
作者
Meng Liu [1 ]
Bangwei Du [1 ]
机构
[1] Anhui University,Center of Pure Mathematics, School of Mathematical Sciences
关键词
Ramsey number; Bipartite graph; Asymptotic bound;
D O I
10.1007/s00373-025-02892-y
中图分类号
学科分类号
摘要
Let α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} be a constant and let m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document} be an integer. In this short note, we shall show that R(Km,αn,Km,n)=((α1/m+1)m+o(1))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(K_{m,\alpha n},K_{m,n})=((\alpha ^{1/m}+1)^m+o(1))n$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] MORE ROTATION NUMBERS FOR COMPLETE BIPARTITE GRAPHS
    BOLLOBAS, B
    COCKAYNE, EJ
    JOURNAL OF GRAPH THEORY, 1982, 6 (04) : 403 - 411
  • [42] Signed domatic numbers of the complete bipartite graphs
    Volkmann, L
    UTILITAS MATHEMATICA, 2005, 68 : 71 - 77
  • [43] Regular Turan numbers of complete bipartite graphs
    Tait, Michael
    Timmons, Craig
    DISCRETE MATHEMATICS, 2021, 344 (10)
  • [44] On the total detection numbers of complete bipartite graphs
    Escuadro, Henry
    Fujie, Futaba
    Musick, Chad E.
    DISCRETE MATHEMATICS, 2013, 313 (24) : 2908 - 2917
  • [45] Anti-Ramsey coloring for matchings in complete bipartite graphs
    Jin, Zemin
    Zang, Yuping
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 1 - 12
  • [46] Anti-Ramsey coloring for matchings in complete bipartite graphs
    Zemin Jin
    Yuping Zang
    Journal of Combinatorial Optimization, 2017, 33 : 1 - 12
  • [47] RAMSEY TYPE PROBLEMS FOR COMPLETE BIPARTITE GRAPHS - PRELIMINARY REPORT
    NIVEN, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A37 - &
  • [48] Bipartite Ramsey numbers and Zarankiewicz numbers
    Goddard, W
    Henning, MA
    Oellermann, OR
    DISCRETE MATHEMATICS, 2000, 219 (1-3) : 85 - 95
  • [49] Relations between crossing numbers of complete and complete bipartite graphs
    Richter, RB
    Thomassen, C
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (02): : 131 - 137
  • [50] Ramsey Numbers for Complete Graphs Versus Generalized Fans
    Maoqun Wang
    Jianguo Qian
    Graphs and Combinatorics, 2022, 38