Ramsey Numbers of Complete Bipartite Graphs

被引:0
|
作者
Meng Liu [1 ]
Bangwei Du [1 ]
机构
[1] Anhui University,Center of Pure Mathematics, School of Mathematical Sciences
关键词
Ramsey number; Bipartite graph; Asymptotic bound;
D O I
10.1007/s00373-025-02892-y
中图分类号
学科分类号
摘要
Let α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} be a constant and let m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document} be an integer. In this short note, we shall show that R(Km,αn,Km,n)=((α1/m+1)m+o(1))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(K_{m,\alpha n},K_{m,n})=((\alpha ^{1/m}+1)^m+o(1))n$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Chaotic numbers of complete bipartite graphs and tripartite graphs
    Chiang, N. P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 131 (03) : 485 - 491
  • [32] Chaotic Numbers of Complete Bipartite Graphs and Tripartite Graphs
    N. P. Chiang
    Journal of Optimization Theory and Applications, 2006, 131 : 485 - 491
  • [33] ON ZERO SUM RAMSEY NUMBERS - COMPLETE GRAPHS
    CARO, Y
    QUARTERLY JOURNAL OF MATHEMATICS, 1992, 43 (170): : 175 - 181
  • [34] On Ramsey numbers for special complete distance graphs
    A. M. Raigorodskii
    Mathematical Notes, 2007, 82 : 426 - 429
  • [35] On Ramsey numbers for special complete distance graphs
    Raigorodskii, A. M.
    MATHEMATICAL NOTES, 2007, 82 (3-4) : 426 - 429
  • [36] On Ramsey numbers of complete graphs with dropped stars
    Chappelon, Jonathan
    Montejano, Luis Pedro
    Alfonsin, Jorge Luis Ramirez
    DISCRETE APPLIED MATHEMATICS, 2016, 210 : 200 - 206
  • [37] On the Ramsey numbers for stars versus complete graphs
    Boza, L.
    Cera, M.
    Garcia-Vazquez, P.
    Revuelta, M. P.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) : 1680 - 1688
  • [38] Ramsey numbers of large books and bipartite graphs with small bandwidth
    You, Chunlin
    Lin, Qizhong
    Chen, Xun
    DISCRETE MATHEMATICS, 2021, 344 (07)
  • [39] Crossing Numbers of Nearly Complete Graphs and Nearly Complete Bipartite Graphs
    Chia, Gek L.
    Lee, Chan L.
    ARS COMBINATORIA, 2015, 121 : 437 - 446
  • [40] Multi-color Ramsey numbers of two bipartite graphs
    Wang, Ye
    Song, Yanyan
    Li, Yusheng
    Liu, Meng
    DISCRETE MATHEMATICS, 2024, 347 (10)