Deep Reinforcement Learning for Over-the-Air Federated Learning in SWIPT-Enabled IoT Networks

被引:0
|
作者
Zhang, Xinran [1 ]
Tian, Hui [1 ]
Ni, Wanli [1 ]
Sun, Mengying [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; simultaneous wireless information and power transfer; over-the-air computation; energy efficiency; deep reinforcement learning;
D O I
10.1109/VTC2022-Fall57202.2022.10012702
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As a distributed machine learning paradigm, federated learning (FL) has been regarded as a promising candidate to preserve user privacy in Internet of Things (IoT) networks. Leveraging the waveform superposition property of wireless channels, over-the-air FL (AirFL) achieves fast model aggregation by integrating communication and computation via concurrent analog transmissions. To support sustainable AirFL among energy-constrained IoT devices, we consider that the base station (BS) adopts simultaneous wireless information and power transfer (SWIPT) to distribute global model and charge local devices in each communication round. To maximize the long-term energy efficiency (EE) of AirFL, we investigate a resource allocation problem by jointly optimizing the time division, transceiver beamforming, and power splitting in SWIPT-enabled IoT networks. Considering such multiple closely-coupled continuous valuables, we propose a deep reinforcement learning (DRL) algorithm based on twin delayed deep deterministic (TD3) policy to smartly make downlink and uplink communication strategies with the coordination between the BS and devices. Simulation results show that the proposed TD3 algorithm obtains about 41% EE improvement compared to traditional optimization method and other DRL algorithms.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Scalable Hierarchical Over-the-Air Federated Learning
    Azimi-Abarghouyi, Seyed Mohammad
    Fodor, Viktoria
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 8480 - 8496
  • [32] Over-the-Air Computation for Vertical Federated Learning
    Zeng, Xiangyu
    Xia, Shuhao
    Yang, Kai
    Wu, Youlong
    Shi, Yuanming
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 788 - 793
  • [33] Adaptive Resource Allocation in SWIPT-Enabled Cognitive IoT Networks
    Sun, Wei
    Song, Qingyang
    Zhao, Jun
    Guo, Lei
    Jamalipour, Abbas
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (01): : 535 - 545
  • [34] SWIPT-Enabled Relaying in IoT Networks Operating With Finite Blocklength Codes
    Hu, Yulin
    Zhu, Yao
    Gursoy, M. Cenk
    Schmeink, Anke
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (01) : 74 - 88
  • [35] Over-the-Air Federated Learning Exploiting Channel Perturbation
    Hamidi, Shayan Mohajer
    Mehrabi, Mohammad
    Khandani, Amir K.
    Gunduz, Deniz
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [36] Over-the-Air Federated Learning via Weighted Aggregation
    Azimi-Abarghouyi, Seyed Mohammad
    Tassiulas, Leandros
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 18240 - 18253
  • [37] Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation
    Xu, Chunmei
    Liu, Shengheng
    Yang, Zhaohui
    Huang, Yongming
    Wong, Kai-Kit
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3742 - 3756
  • [38] Asynchronous Federated Learning via Over-the-air Computation
    Zheng, Zijian
    Deng, Yansha
    Liu, Xiaonan
    Nallanathan, Arumugam
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1345 - 1350
  • [39] Over-the-Air Federated Learning from Heterogeneous Data
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina
    IEEE Transactions on Signal Processing, 2021, 69 : 3796 - 3811
  • [40] Federated Edge Learning With Misaligned Over-the-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 3951 - 3964