Deep Reinforcement Learning for Over-the-Air Federated Learning in SWIPT-Enabled IoT Networks

被引:0
|
作者
Zhang, Xinran [1 ]
Tian, Hui [1 ]
Ni, Wanli [1 ]
Sun, Mengying [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; simultaneous wireless information and power transfer; over-the-air computation; energy efficiency; deep reinforcement learning;
D O I
10.1109/VTC2022-Fall57202.2022.10012702
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As a distributed machine learning paradigm, federated learning (FL) has been regarded as a promising candidate to preserve user privacy in Internet of Things (IoT) networks. Leveraging the waveform superposition property of wireless channels, over-the-air FL (AirFL) achieves fast model aggregation by integrating communication and computation via concurrent analog transmissions. To support sustainable AirFL among energy-constrained IoT devices, we consider that the base station (BS) adopts simultaneous wireless information and power transfer (SWIPT) to distribute global model and charge local devices in each communication round. To maximize the long-term energy efficiency (EE) of AirFL, we investigate a resource allocation problem by jointly optimizing the time division, transceiver beamforming, and power splitting in SWIPT-enabled IoT networks. Considering such multiple closely-coupled continuous valuables, we propose a deep reinforcement learning (DRL) algorithm based on twin delayed deep deterministic (TD3) policy to smartly make downlink and uplink communication strategies with the coordination between the BS and devices. Simulation results show that the proposed TD3 algorithm obtains about 41% EE improvement compared to traditional optimization method and other DRL algorithms.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Federated Learning with Partial Gradients Over-the-Air
    Wang, Wendi
    Chen, Zihan
    Pappas, Nikolaos
    Yang, Howard H.
    2023 20TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING, SECON, 2023,
  • [22] Over-the-Air Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Shan, Hangguan
    Wu, Liantao
    Tian, Xiaohua
    Shi, Yuanming
    Zhou, Yong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 5006 - 5021
  • [23] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [24] Inverse Feasibility in Over-the-Air Federated Learning
    Piotrowski, Tomasz
    Ismayilov, Rafail
    Frey, Matthias
    Cavalcante, Renato L. G.
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1434 - 1438
  • [25] Hierarchical Over-the-Air Federated Edge Learning
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3376 - 3381
  • [26] Over-the-Air Federated Learning with Enhanced Privacy
    Xue, Xiaochan
    Hasan, Moh Khalid
    Yu, Shucheng
    Kandel, Laxima Niure
    Song, Min
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4546 - 4551
  • [27] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [28] Model Pruning for Efficient Over-the-Air Federated Learning in Tactical Networks
    Khan, Fazal Muhammad Ali
    Abou-Zeid, Hatem
    Hassan, Syed Ali
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 1806 - 1811
  • [29] COTAF: Convergent Over-the-Air Federated Learning
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [30] An Overview on Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Lyu, Zhonghao
    Zhu, Guangxu
    Xu, Jie
    Xu, Lexi
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 202 - 210