Federated Learning Based on Over-the-Air Computation

被引:0
|
作者
Yang, Kai [1 ]
Jiang, Tao [1 ]
Shi, Yuanming [1 ]
Ding, Zhi [2 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Univ Calif Davis, Dept ECE, Davis, CA 95616 USA
关键词
Federated learning; over-the-air computation; sparse optimization; low-rank optimization; DC programming; OPTIMIZATION; SPARSE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rapid growth in storage capacity and computational power of mobile devices is making it increasingly attractive for devices to process data locally instead of risking privacy by sending them to the cloud or networks. This reality has stimulated a novel federated learning framework for training statistical machine learning models on mobile devices directly using decentralized data. However, communication bandwidth remains a bottleneck for globally aggregating the locally computed updates. This work presents a novel model aggregation approach by exploiting the natural signal superposition of wireless multipleaccess channel. This over-the-air computation is achieved by joint device selection and receiver beamforming design to improve the statistical learning performance. To tackle the difficult mixed combinatorial optimization problem with nonconvex quadratic constraints, we propose a novel sparse and low-rank modeling approach and develop an efficient difference-of-convex-function (DC) algorithm. Our results demonstrate the algorithm's ability to aggregate results from more devices to deliver superior learning performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [2] Over-the-Air Computation for Vertical Federated Learning
    Zeng, Xiangyu
    Xia, Shuhao
    Yang, Kai
    Wu, Youlong
    Shi, Yuanming
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 788 - 793
  • [3] On the Differential Privacy in Federated Learning Based on Over-the-Air Computation
    Park, Sangjun
    Choi, Wan
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4269 - 4283
  • [4] Asynchronous Federated Learning via Over-the-air Computation
    Zheng, Zijian
    Deng, Yansha
    Liu, Xiaonan
    Nallanathan, Arumugam
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1345 - 1350
  • [5] Federated Edge Learning With Misaligned Over-the-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 3951 - 3964
  • [6] ROBUST FEDERATED LEARNING VIA OVER-THE-AIR COMPUTATION
    Sifaou, Houssem
    Li, Geoffrey Ye
    [J]. 2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [7] Federated Edge Learning with Misaligned Over-The-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    [J]. SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 236 - 240
  • [8] Deep Learning Based Coded Over-the-Air Computation for Personalized Federated Learning
    Chen, Danni
    Lei, Ming
    Zhao, Ming-Min
    Liu, An
    Sheng, Sikai
    [J]. 2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [9] User Scheduling for Federated Learning Through Over-the-Air Computation
    Ma, Xiang
    Sun, Haijian
    Wang, Qun
    Hu, Rose Qingyang
    [J]. 2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [10] Over-the-Air Computation Assisted Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Luo, Xiliang
    Zhou, Yong
    [J]. ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5940 - 5945