Over-the-Air Federated Learning via Weighted Aggregation

被引:0
|
作者
Azimi-Abarghouyi, Seyed Mohammad [1 ]
Tassiulas, Leandros [2 ]
机构
[1] KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, Stockholm,114 28, Sweden
[2] Yale University, Institute for Network Science, Department of Electrical Engineering, New Haven,CT,06511, United States
基金
美国国家科学基金会;
关键词
D O I
10.1109/TWC.2024.3463754
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper introduces a new federated learning scheme that leverages over-the-air computation. A novel feature of this scheme is the proposal to employ adaptive weights during aggregation, a facet treated as predefined in other over-the-air schemes. This can mitigate the impact of wireless channel conditions on learning performance, without needing channel state information at transmitter side (CSIT). We provide a mathematical methodology to derive the convergence bound for the proposed scheme in the context of computational heterogeneity and general loss functions, supplemented with design insights. Accordingly, we propose aggregation cost metrics and efficient algorithms to find optimized weights for the aggregation. Finally, through numerical experiments, we validate the effectiveness of the proposed scheme. Even with the challenges posed by channel conditions and device heterogeneity, the proposed scheme surpasses other over-the-air strategies by an accuracy improvement of 15% over the scheme using CSIT and 30% compared to the one without CSIT. © 2024 IEEE.
引用
收藏
页码:18240 / 18253
相关论文
共 50 条
  • [1] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [2] Coded Over-the-Air Computation for Model Aggregation in Federated Learning
    Zhang, Naifu
    Tao, Meixia
    Wang, Jia
    Shao, Shuo
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 160 - 164
  • [3] Asynchronous Federated Learning via Over-the-air Computation
    Zheng, Zijian
    Deng, Yansha
    Liu, Xiaonan
    Nallanathan, Arumugam
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1345 - 1350
  • [4] ROBUST FEDERATED LEARNING VIA OVER-THE-AIR COMPUTATION
    Sifaou, Houssem
    Li, Geoffrey Ye
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [5] Federated Learning With Over-the-Air Aggregation Over Time-Varying Channels
    Tegin, Busra
    Duman, Tolga M.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (08) : 5671 - 5684
  • [6] Over-the-Air Aggregation for Federated Learning: Waveform Superposition and Prototype Validation
    Guo, Huayan
    Zhu, Yifan
    Ma, Haoyu
    Lau, Vincent K. N.
    Huang, Kaibin
    Li, Xiaofan
    Nong, Huabin
    Zhou, Mingyu
    Journal of Communications and Information Networks, 2021, 6 (04) : 429 - 442
  • [7] Beamforming and Device Selection Design in Federated Learning With Over-the-Air Aggregation
    Kalarde, Faeze Moradi
    Dong, Min
    Liang, Ben
    Ahmed, Yahia A. Eldemerdash
    Cheng, Ho Ting
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 1710 - 1723
  • [8] IRS Assisted Federated Learning: A Broadband Over-the-Air Aggregation Approach
    Zhang, Deyou
    Xiao, Ming
    Pang, Zhibo
    Wang, Lihui
    Poor, H. Vincent
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4069 - 4082
  • [9] UAV-Assisted Hierarchical Aggregation for Over-the-Air Federated Learning
    Zhong, Xiangyu
    Yuan, Xiaojun
    Yang, Huiyuan
    Zhong, Chenxi
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 807 - 812
  • [10] Power Minimization in Federated Learning with Over-the-air Aggregation and Receiver Beamforming
    Kalarde, Faeze Moradi
    Liang, Ben
    Dong, Min
    Ahmed, Yahia A. Eldemerdash
    Cheng, Ho Ting
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 259 - 267