UAV-Assisted Hierarchical Aggregation for Over-the-Air Federated Learning

被引:9
|
作者
Zhong, Xiangyu [1 ]
Yuan, Xiaojun [1 ]
Yang, Huiyuan [1 ]
Zhong, Chenxi [1 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Region Inst, Huzhou, Peoples R China
关键词
COMPUTATION; DESIGN;
D O I
10.1109/GLOBECOM48099.2022.10001689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With huge amounts of data explosively increasing on the mobile edge, over-the-air federated learning (OA-FL) emerges as a promising technique to reduce communication costs and privacy leak risks. However, when devices in a relatively large area cooperatively train a machine learning model, the attendant straggler issue will significantly reduce the learning performance. In this paper, we propose an unmanned aerial vehicle (UAV) assisted OA-FL system, where the UAV acts as a parameter server (PS) to aggregate the local gradients hierarchically for global model updating. Under this UAV-assisted hierarchical aggregation scheme, we carry out a gradient-correlation-aware FL performance analysis. We then formulate a mean squared error (MSE) minimization problem to tune the UAV trajectory and the global aggregation coefficients based on the analysis results. An algorithm based on alternating optimization (AO) and successive convex approximation (SCA) is developed to solve the formulated problem. Simulation results demonstrate the great potential of our UAV-assisted hierarchical aggregation scheme.
引用
收藏
页码:807 / 812
页数:6
相关论文
共 50 条
  • [1] Joint Trajectory and Communication Optimization for UAV-Assisted Over-The-Air Federated Learning
    Hsu, Kai-Chieh
    Lee, Ming-Chun
    Hong, Y. -W. Peter
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 1666 - 1671
  • [2] UAV-Assisted Over-the-Air Computation
    Fu, Min
    Zhou, Yong
    Shi, Yuanming
    Wang, Ting
    Chen, Wei
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [3] Over-the-Air Computation Assisted Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Luo, Xiliang
    Zhou, Yong
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5940 - 5945
  • [4] IRS Assisted Federated Learning: A Broadband Over-the-Air Aggregation Approach
    Zhang, Deyou
    Xiao, Ming
    Pang, Zhibo
    Wang, Lihui
    Poor, H. Vincent
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4069 - 4082
  • [5] Hierarchical Over-the-Air Federated Edge Learning
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3376 - 3381
  • [6] Over-the-Air Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Shan, Hangguan
    Wu, Liantao
    Tian, Xiaohua
    Shi, Yuanming
    Zhou, Yong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 5006 - 5021
  • [7] Scalable Hierarchical Over-the-Air Federated Learning
    Azimi-Abarghouyi, Seyed Mohammad
    Fodor, Viktoria
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 8480 - 8496
  • [8] BYZANTINE-RESILIENT HIERARCHICAL FEDERATED LEARNING WITH CLUSTERED OVER-THE-AIR AGGREGATION
    Nordlund, David
    Liao, Baling
    Chen, Zheng
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024, 2024, : 715 - 719
  • [9] Learning in the Air: Secure Federated Learning for UAV-Assisted Crowdsensing
    Wang, Yuntao
    Su, Zhou
    Zhang, Ning
    Benslimane, Abderrahim
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (02): : 1055 - 1069
  • [10] UAV-Assisted Multi-Cluster Over-the-Air Computation
    Fu, Min
    Zhou, Yong
    Shi, Yuanming
    Jiang, Chunxiao
    Zhang, Wei
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (07) : 4668 - 4682