Turbulent thermal superstructures in Rayleigh-Benard convection

被引:96
|
作者
Stevens, Richard J. A. M. [1 ,2 ]
Blass, Alexander [1 ,2 ]
Zhu, Xiaojue [1 ,2 ]
Verzicco, Roberto [1 ,2 ,3 ]
Lohse, Detlef [1 ,2 ,4 ]
机构
[1] Univ Twente, Phys Fluids Grp, Max Planck Ctr Twente Complex Fluid Dynam, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Res Inst, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[4] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 04期
关键词
ASPECT RATIO DEPENDENCE; HEAT-TRANSPORT; CHANNEL FLOW; PATTERNS; NUMBER; FLUID; PIPE; DISSIPATION; STATISTICS; TRANSITION;
D O I
10.1103/PhysRevFluids.3.041501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Benard convection up to Rayleigh Ra = 10(9). We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Gamma = 128. In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Gamma approximate to 4, while horizontally averaged statistics such as standard deviation and kurtosis converge around Gamma approximate to 8, the integral scale converges around Gamma approximate to 32, and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Gamma approximate to 64.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Turbulent superstructures in Rayleigh-Benard convection
    Pandey, Ambrish
    Scheel, Janet D.
    Schumacher, Joerg
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] Probing turbulent superstructures in Rayleigh-Benard convection by Lagrangian trajectory clusters
    Schneide, Christiane
    Pandey, Ambrish
    Padberg-Gehle, Kathrin
    Schumacher, Joerg
    [J]. PHYSICAL REVIEW FLUIDS, 2018, 3 (11):
  • [3] Thermal boundary layers in turbulent Rayleigh-Benard convection
    du Puits, R.
    Resagk, C.
    Thess, A.
    [J]. ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 589 - 592
  • [4] Asymmetries in Turbulent Rayleigh-Benard Convection
    du Puits, Ronald
    Resagk, Christian
    Thess, Andre
    [J]. PROGRESS IN TURBULENCE III, 2010, 131 : 179 - 182
  • [5] The turbulent regimes of Rayleigh-Benard convection
    Chavanne, X
    Chilla, F
    Castaing, B
    Chabaud, B
    Hebral, B
    Roche, P
    [J]. ADVANCES IN TURBULENCE VII, 1998, 46 : 461 - 464
  • [6] Turbulent Rotating Rayleigh-Benard Convection
    Ecke, Robert E.
    Shishkina, Olga
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2023, 55 : 603 - 638
  • [7] Analysis of thermal dissipation rates in turbulent Rayleigh-Benard convection
    Shishkina, O
    Wagner, C
    [J]. JOURNAL OF FLUID MECHANICS, 2006, 546 : 51 - 60
  • [8] Morphological evolution of thermal plumes in turbulent Rayleigh-Benard convection
    Zhou, Quan
    Sun, Chao
    Xia, Ke-Qing
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (07)
  • [9] Thermal Boundary Layer Equation for Turbulent Rayleigh-Benard Convection
    Shishkina, Olga
    Horn, Susanne
    Wagner, Sebastian
    Ching, Emily S. C.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [10] Measured thermal dissipation field in turbulent Rayleigh-Benard convection
    He, Xiaozhou
    Tong, Penger
    Xia, Ke-Qing
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)