Turbulent thermal superstructures in Rayleigh-Benard convection

被引:96
|
作者
Stevens, Richard J. A. M. [1 ,2 ]
Blass, Alexander [1 ,2 ]
Zhu, Xiaojue [1 ,2 ]
Verzicco, Roberto [1 ,2 ,3 ]
Lohse, Detlef [1 ,2 ,4 ]
机构
[1] Univ Twente, Phys Fluids Grp, Max Planck Ctr Twente Complex Fluid Dynam, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Res Inst, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[4] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 04期
关键词
ASPECT RATIO DEPENDENCE; HEAT-TRANSPORT; CHANNEL FLOW; PATTERNS; NUMBER; FLUID; PIPE; DISSIPATION; STATISTICS; TRANSITION;
D O I
10.1103/PhysRevFluids.3.041501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Benard convection up to Rayleigh Ra = 10(9). We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Gamma = 128. In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Gamma approximate to 4, while horizontally averaged statistics such as standard deviation and kurtosis converge around Gamma approximate to 8, the integral scale converges around Gamma approximate to 32, and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Gamma approximate to 64.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Numerical simulation of turbulent Rayleigh-Benard convection
    Palymskiy, Igor
    [J]. PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2012, 12 (04): : 243 - 250
  • [32] Thermal modulation of Rayleigh-Benard convection
    Bhadauria, BS
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2002, 57 (9-10): : 780 - 786
  • [33] Characteristics of flow and thermal boundary layer in turbulent Rayleigh-Benard convection
    Huang Mao-Jing
    Bao Yun
    [J]. ACTA PHYSICA SINICA, 2016, 65 (20)
  • [34] Conditional statistics of thermal dissipation rate in turbulent Rayleigh-Benard convection
    Emran, Mohammad S.
    Schumacher, Joerg
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (10):
  • [35] Direct measurements of the thermal dissipation rate in turbulent Rayleigh-Benard convection
    Hertlein, Anna
    du Puits, Ronald
    [J]. PHYSICS OF FLUIDS, 2021, 33 (03)
  • [36] Physical and geometrical properties of thermal plumes in turbulent Rayleigh-Benard convection
    Zhou, Quan
    Xia, Ke-Qing
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [37] Spectra and probability distributions of thermal flux in turbulent Rayleigh-Benard convection
    Pharasi, Hirdesh K.
    Kumar, Deepesh
    Kumar, Krishna
    Bhattacharjee, Jayanta K.
    [J]. PHYSICS OF FLUIDS, 2016, 28 (05)
  • [38] Velocity and thermal boundary layer equations for turbulent Rayleigh-Benard convection
    Ching, Emily S. C.
    Leung, H. S.
    Zwirner, Lukas
    Shishkina, Olga
    [J]. PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [39] Study on propagation characteristics of laser in turbulent Rayleigh-Benard thermal convection
    Zhou, Zhichao
    Liu, Kang
    Xu, Lingfei
    Zhang, Guangjun
    Wang, Zhe
    Ren, Tianrong
    Gu, Cunfeng
    Sun, Gang
    [J]. JOURNAL OF ENGINEERING-JOE, 2019, 2019 (20): : 6902 - 6905
  • [40] Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Benard convection
    King, Eric M.
    Aurnou, Jonathan M.
    [J]. PHYSICAL REVIEW E, 2012, 85 (01):