Turbulent thermal superstructures in Rayleigh-Benard convection

被引:96
|
作者
Stevens, Richard J. A. M. [1 ,2 ]
Blass, Alexander [1 ,2 ]
Zhu, Xiaojue [1 ,2 ]
Verzicco, Roberto [1 ,2 ,3 ]
Lohse, Detlef [1 ,2 ,4 ]
机构
[1] Univ Twente, Phys Fluids Grp, Max Planck Ctr Twente Complex Fluid Dynam, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Res Inst, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[4] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 04期
关键词
ASPECT RATIO DEPENDENCE; HEAT-TRANSPORT; CHANNEL FLOW; PATTERNS; NUMBER; FLUID; PIPE; DISSIPATION; STATISTICS; TRANSITION;
D O I
10.1103/PhysRevFluids.3.041501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Benard convection up to Rayleigh Ra = 10(9). We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Gamma = 128. In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Gamma approximate to 4, while horizontally averaged statistics such as standard deviation and kurtosis converge around Gamma approximate to 8, the integral scale converges around Gamma approximate to 32, and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Gamma approximate to 64.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Wind reversals in turbulent Rayleigh-Benard convection
    Araujo, FF
    Grossmann, S
    Lohse, D
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (08)
  • [22] New perspectives in turbulent Rayleigh-Benard convection
    Chilla, F.
    Schumacher, J.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (07):
  • [23] Temperature statistics in turbulent Rayleigh-Benard convection
    Luelff, J.
    Wilczek, M.
    Friedrich, R.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [24] Temperature oscillations in turbulent Rayleigh-Benard convection
    Qiu, XL
    Tong, P
    [J]. PHYSICAL REVIEW E, 2002, 66 (02): : 1 - 026308
  • [25] Dynamics of plumes in turbulent Rayleigh-Benard convection
    De, A. K.
    Eswaran, V.
    Mishra, P. K.
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2018, 72 : 164 - 178
  • [26] Heat transport in turbulent Rayleigh-Benard convection
    Xu, XC
    Bajaj, KMS
    Ahlers, G
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4357 - 4360
  • [27] Velocity oscillations in turbulent Rayleigh-Benard convection
    Qiu, XL
    Shang, XD
    Tong, P
    Xia, KQ
    [J]. PHYSICS OF FLUIDS, 2004, 16 (02) : 412 - 423
  • [28] PLANFORM STRUCTURE OF TURBULENT RAYLEIGH-BENARD CONVECTION
    THEERTHAN, SA
    ARAKERI, JH
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1994, 21 (04) : 561 - 572
  • [29] Turbulent Rayleigh-Benard convection in an annular cell
    Zhu, Xu
    Jiang, Lin-Feng
    Zhou, Quan
    Sun, Chao
    [J]. JOURNAL OF FLUID MECHANICS, 2019, 869
  • [30] Numerical simulation of turbulent Rayleigh-Benard convection
    Yang, HX
    Zhu, ZJ
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2006, 33 (02) : 184 - 190