Turbulent Rotating Rayleigh-Benard Convection

被引:42
|
作者
Ecke, Robert E. [1 ,2 ]
Shishkina, Olga [3 ]
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Max Planck Inst Dynam & Self Org, Gottingen, Germany
关键词
turbulence; buoyancy; rotation; convection; Rayleigh-Benard flow; heat transport; theory; measurements; direct numerical simulations; LARGE-SCALE CIRCULATION; HEAT-TRANSPORT; THERMAL-CONVECTION; BOUSSINESQ APPROXIMATION; ASYMMETRIC MODES; BOUNDARY-LAYERS; FLOW STRUCTURE; FLUID; ONSET; STABILITY;
D O I
10.1146/annurev-fluid-120720-020446
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Rotation with thermally induced buoyancy governs many astrophysical and geophysical processes in the atmosphere, ocean, sun, and Earth's liquid-metal outer core. Rotating Rayleigh-Benard convection (RRBC) is an experimental system that has features of rotation and buoyancy, where a container of height H and temperature difference Delta between its bottom and top is rotated about its vertical axis with angular velocity Omega. The strength of buoyancy is reflected in the Rayleigh number (similar to H-3 Delta) and that of the Coriolis force in the Ekman and Rossby numbers (similar to Omega(-1)). Rotation suppresses the convective onset, introduces instabilities, changes the velocity boundary layers, modifies the shape of thermal structures from plumes to vortical columns, affects the large-scale circulation, and can decrease or enhance global heat transport depending on buoyant and Coriolis forcing. RRBC is an extremely rich system, with features directly comparable to geophysical and astrophysical phenomena. Here we review RRBC studies, suggest a unifying heat transport scaling approach for the transition between rotation-dominated and buoyancy-dominated regimes in RRBC, and discuss non-Oberbeck-Boussinesq and centrifugal effects.
引用
收藏
页码:603 / 638
页数:36
相关论文
共 50 条
  • [1] Rapidly rotating turbulent Rayleigh-Benard convection
    Julien, K
    Legg, S
    McWilliams, J
    Werne, J
    [J]. JOURNAL OF FLUID MECHANICS, 1996, 322 : 243 - 273
  • [2] Transitions in turbulent rotating Rayleigh-Benard convection
    Schmitz, S.
    Tilgner, A.
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2010, 104 (5-6): : 481 - 489
  • [3] Multiple Transitions in Rotating Turbulent Rayleigh-Benard Convection
    Wei, Ping
    Weiss, Stephan
    Ahlers, Guenter
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [4] Turbulent Rotating Rayleigh-Benard Convection: Spatiotemporal and Statistical Study
    Husain, A.
    Baig, M. F.
    Varshney, H.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (02): : 1 - 10
  • [5] Boundary Zonal Flow in Rotating Turbulent Rayleigh-Benard Convection
    Zhang, Xuan
    van Gils, Dennis P. M.
    Horn, Susanne
    Wedi, Marcel
    Zwirner, Lukas
    Ahlers, Guenter
    Ecke, Robert E.
    Weiss, Stephan
    Bodenschatz, Eberhard
    Shishkina, Olga
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (08)
  • [6] Boundary layers in rotating weakly turbulent Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Clercx, Herman J. H.
    Lohse, Detlef
    [J]. PHYSICS OF FLUIDS, 2010, 22 (08)
  • [7] Direct numerical simulation of turbulent rotating Rayleigh-Benard convection
    Kunnen, R. P. J.
    Geurts, J.
    Clercx, H. J. H.
    [J]. DIRECT AND LARGE-EDDY SIMULATION VI, 2006, 10 : 233 - +
  • [8] Transitions between Turbulent States in Rotating Rayleigh-Benard Convection
    Stevens, Richard J. A. M.
    Zhong, Jin-Qiang
    Clercx, Herman J. H.
    Ahlers, Guenter
    Lohse, Detlef
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (02)
  • [9] Local temperature measurements in turbulent rotating Rayleigh-Benard convection
    Liu, Yuanming
    Ecke, Robert E.
    [J]. PHYSICAL REVIEW E, 2011, 84 (01):
  • [10] Subcritical turbulent condensate in rapidly rotating Rayleigh-Benard convection
    Favier, Benjamin
    Guervilly, Celine
    Knobloch, Edgar
    [J]. JOURNAL OF FLUID MECHANICS, 2019, 864 : R1