An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces

被引:6
|
作者
Martinez, Angel D. [1 ]
Spector, Daniel [2 ]
机构
[1] Inst Adv Study, Fuld Hall 412,1 Einstein Dr, Princeton, NJ 08540 USA
[2] Okinawa Inst Sci & Technol Grad Univ, Nonlinear Anal Unit, 1919-1 Tancha, Onna, Okinawa, Japan
基金
美国国家科学基金会;
关键词
Riesz Potentials; Critical Sobolev Embedding; Hausdorff Content; SHARP INEQUALITY;
D O I
10.1515/anona-2020-0157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions of bounded mean oscillation, the main result of this paper is an improvement for functions in a class of critical Sobolev spaces. Precisely, we prove the inequality H-infinity(beta)({x is an element of Omega : vertical bar I(alpha)f(x)vertical bar > t}) <= Ce-ctq' for all parallel to f parallel to(LN/a,q(Omega)) <= 1 and any beta is an element of (0, N], where Omega subset of R-N, N-infinity(beta) is the Hausdorff content, L-N/(alpha,q) (Omega) is a Lorentz space with q is an element of (1, infinity], q' = q/(q - 1) is the Holder conjugate to q, and I(alpha)f denotes the Riesz potential of f of order alpha is an element of (0, N).
引用
下载
收藏
页码:877 / 894
页数:18
相关论文
共 50 条