THE PREDUAL AND JOHN-NIRENBERG INEQUALITIES ON GENERALIZED BMO MARTINGALE SPACES

被引:56
|
作者
Jiao, Yong [1 ]
Wu, Lian [1 ]
Yang, Anming [1 ]
Yi, Rui [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410085, Hunan, Peoples R China
关键词
Predual; John-Nirenberg inequalities; generalized BMO spaces; martingale Hardy-Lorentz space; fractional integral; ATOMIC DECOMPOSITIONS; HARDY-SPACES;
D O I
10.1090/tran/6657
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the generalized BMO martingale spaces by stopping time sequences, which enable us to characterize the dual spaces of martingale Hardy-Lorentz spaces H-p,q(s) for 0 < p <= 1, 1 < q < infinity. Moreover, by duality we obtain a John-Nirenberg theorem for the generalized BMO martingale spaces when the stochastic basis is regular. We also extend the boundedness of fractional integrals to martingale Hardy-Lorentz spaces.
引用
收藏
页码:537 / 553
页数:17
相关论文
共 50 条
  • [1] John-Nirenberg Inequalities and Weight Invariant BMO Spaces
    Hart, Jarod
    Torres, Rodolfo H.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (02) : 1608 - 1648
  • [2] John-Nirenberg inequalities for parabolic BMO
    Kinnunen, Juha
    Myyrylainen, Kim
    Yang, Dachun
    [J]. MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1125 - 1162
  • [3] BMO and the John-Nirenberg Inequality on Measure Spaces
    Dafni, Galia
    Gibara, Ryan
    Lavigne, Andrew
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 335 - 362
  • [4] JOHN-NIRENBERG INEQUALITY FOR LIPSCHITZ MARTINGALE SPACES
    Ren, Yanbo
    Ma, Congbian
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (01): : 45 - 52
  • [5] DUAL SPACES AND JOHN-NIRENBERG INEQUALITIES OF MARTINGALE HARDY-LORENTZ-KARAMATA SPACES
    Jiao, Yong
    Xie, Guangheng
    Zhou, Dejian
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (02): : 605 - 623
  • [6] John-Nirenberg Inequalities for Noncommutative Column BMO and Lipschitz Martingales
    Hong, Guixiang
    Ma, Congbian
    Wang, Yu
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (03)
  • [7] Inequalities of John-Nirenberg type in doubling spaces
    Buckley, SM
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1): : 215 - 240
  • [8] JOHN-NIRENBERG INEQUALITIES ON LEBESGUE SPACES WITH VARIABLE EXPONENTS
    Ho, Kwok-Pun
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (04): : 1107 - 1118
  • [9] John-Nirenberg Inequalities with Variable Exponents on Probability Spaces
    Wu, Lian
    Hao, Zhiwei
    Jiao, Yong
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (02) : 353 - 367
  • [10] John–Nirenberg Inequalities and Weight Invariant BMO Spaces
    Jarod Hart
    Rodolfo H. Torres
    [J]. The Journal of Geometric Analysis, 2019, 29 : 1608 - 1648