An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces

被引:6
|
作者
Martinez, Angel D. [1 ]
Spector, Daniel [2 ]
机构
[1] Inst Adv Study, Fuld Hall 412,1 Einstein Dr, Princeton, NJ 08540 USA
[2] Okinawa Inst Sci & Technol Grad Univ, Nonlinear Anal Unit, 1919-1 Tancha, Onna, Okinawa, Japan
基金
美国国家科学基金会;
关键词
Riesz Potentials; Critical Sobolev Embedding; Hausdorff Content; SHARP INEQUALITY;
D O I
10.1515/anona-2020-0157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions of bounded mean oscillation, the main result of this paper is an improvement for functions in a class of critical Sobolev spaces. Precisely, we prove the inequality H-infinity(beta)({x is an element of Omega : vertical bar I(alpha)f(x)vertical bar > t}) <= Ce-ctq' for all parallel to f parallel to(LN/a,q(Omega)) <= 1 and any beta is an element of (0, N], where Omega subset of R-N, N-infinity(beta) is the Hausdorff content, L-N/(alpha,q) (Omega) is a Lorentz space with q is an element of (1, infinity], q' = q/(q - 1) is the Holder conjugate to q, and I(alpha)f denotes the Riesz potential of f of order alpha is an element of (0, N).
引用
下载
收藏
页码:877 / 894
页数:18
相关论文
共 50 条
  • [41] Median-Type John-Nirenberg Space in Metric Measure Spaces
    Myyrylainen, Kim
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)
  • [42] The minimal operator and the John-Nirenberg theorem for weighted grand Lebesgue spaces
    Peng, Lihua
    Jiao, Yong
    STUDIA MATHEMATICA, 2015, 229 (03) : 189 - 202
  • [43] A noncommutative version of the John-Nirenberg theorem
    Junge, Marius
    Musat, Magdalena
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) : 115 - 142
  • [44] New John-Nirenberg inequalities for martingales
    Yi, Rui
    Wu, Lian
    Jiao, Yong
    STATISTICS & PROBABILITY LETTERS, 2014, 86 : 68 - 73
  • [45] A Remark on John-Nirenberg Theorem for Martingales
    Li, L.
    UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (11) : 1812 - 1820
  • [46] DUAL SPACES AND JOHN-NIRENBERG INEQUALITIES OF MARTINGALE HARDY-LORENTZ-KARAMATA SPACES
    Jiao, Yong
    Xie, Guangheng
    Zhou, Dejian
    QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (02): : 605 - 623
  • [47] Weighted mixed-norm inequality on Doob's maximal operator and John-Nirenberg inequalities in Banach function spaces
    Chen, W.
    Ho, K. -P.
    Jiao, Y.
    Zhou, D.
    ACTA MATHEMATICA HUNGARICA, 2019, 157 (02) : 408 - 433
  • [48] John-Nirenberg inequalities for parabolic BMO
    Kinnunen, Juha
    Myyrylainen, Kim
    Yang, Dachun
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1125 - 1162
  • [49] EXTENSIONS OF THE JOHN-NIRENBERG THEOREM AND APPLICATIONS
    Canto, Javier
    Perez, Carlos
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1507 - 1525
  • [50] John-Nirenberg Type Inequalities for Musielak-Orlicz Campanato Spaces on Spaces of Homogeneous Type
    Duong Quoc Huy
    Luong Dang Ky
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (02) : 461 - 476