Equivariant Poincare series of filtrations and topology

被引:2
|
作者
Campillo, Antonio [1 ]
Delgado, Felix [1 ]
Gusein-Zade, Sabir M. [2 ]
机构
[1] Univ Valladolid, Inst Invest Matemat, ES-47011 Valladolid, Spain
[2] Moscow MV Lomonosov State Univ, Fac Math & Mech, Moscow 119991, Russia
来源
ARKIV FOR MATEMATIK | 2014年 / 52卷 / 01期
关键词
PLANE CURVE SINGULARITY;
D O I
10.1007/s11512-013-0188-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Earlier, for an action of a finite group G on a germ of an analytic variety, an equivariant G-Poincar, series of a multi-index filtration in the ring of germs of functions on the variety was defined as an element of the Grothendieck ring of G-sets with an additional structure. We discuss to which extent the G-Poincar, series of a filtration defined by a set of curve or divisorial valuations on the ring of germs of analytic functions in two variables determines the (equivariant) topology of the curve or of the set of divisors.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 50 条
  • [21] A REMARK ON EQUIVARIANT POINCARE-DUALITY
    CHEN, H
    LEE, DB
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 74 (03) : 239 - 245
  • [22] EQUIVARIANT SIMPLE POINCARE-DUALITY
    COSTENOBLE, SR
    WANER, S
    MICHIGAN MATHEMATICAL JOURNAL, 1993, 40 (03) : 577 - 604
  • [23] EQUIVARIANT ALGEBRAIC TOPOLOGY
    ILLMAN, S
    ANNALES DE L INSTITUT FOURIER, 1973, 23 (02) : 87 - 91
  • [24] Monodromy Filtrations and the Topology of Tropical Varieties
    Helm, David
    Katz, Eric
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (04): : 845 - 868
  • [25] Weil-Poincare series and topology of collections of valuations on rational double points
    Campillo, A.
    Delgado, F.
    Gusein-Zade, S. M.
    ARKIV FOR MATEMATIK, 2022, 60 (02): : 297 - 322
  • [26] NORMALLY LINEAR POINCARE COMPLEXES AND EQUIVARIANT SPLITTINGS
    ASSADI, AH
    LECTURE NOTES IN MATHEMATICS, 1986, 1217 : 58 - 78
  • [27] Equivariant Poincare duality for quantum group actions
    Nest, Ryszard
    Voigt, Christian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (05) : 1466 - 1503
  • [28] EQUIVARIANT EULER-POINCARE CHARACTERISTICS AND TAMENESS
    CHINBURG, T
    EREZ, B
    ASTERISQUE, 1992, (209) : 179 - 194
  • [29] Equivariant Poincare Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes Introduction
    Morel, Jean-Michel
    Teissier, Bernard
    EQUIVARIANT POINCARE DUALITY ON G-MANIFOLDS: EQUIVARIANT GYSIN MORPHISM AND EQUIVARIANT EULER CLASSES, 2021, 2288 : 1 - 8
  • [30] Equivariant Poincare Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes Preface
    Morel, Jean-Michel
    Teissier, Bernard
    EQUIVARIANT POINCARE DUALITY ON G-MANIFOLDS: EQUIVARIANT GYSIN MORPHISM AND EQUIVARIANT EULER CLASSES, 2021, 2288 : V - +