EQUIVARIANT EULER-POINCARE CHARACTERISTICS AND TAMENESS

被引:0
|
作者
CHINBURG, T
EREZ, B
机构
[1] UNIV PENN,DEPT MATH,PHILADELPHIA,PA 19104
[2] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define an Euler-Poincare characteristic which is the basis for generalizing to tame coverings of schemes the theory of the Galois module structure of rings of algebraic integers. First we define tame G-coverings of schemes f : X --> Y, where G is a finite group. Then, under the assumption that the schemes are proper and of finite type over a noetherian ring A and given T a coherent G-sheaf on X, we define the Euler-Poincare characteristic chiRGAMMA+(f*((T)), which is an element of the Grothendieck group CT(AG) of all finitely generated AG-modules which are cohomologically trivial as G-modules. In fact the definition applies to certain complexes of sheaves on X which occur in applications. In an appendix we include a proof of a variant of the well known Lemma of Abhyankar characterizing tame G-coverings of schemes.
引用
收藏
页码:179 / 194
页数:16
相关论文
共 50 条
  • [1] CHARACTERISTICS OF EULER-POINCARE
    VERDIER, JL
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1973, 101 (04): : 441 - 445
  • [2] On Euler-Poincare characteristics
    Virk, Rahbar
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (05) : 449 - 453
  • [3] Equivariant Euler-Poincare characteristic in sheaf cohomology
    Kionke, Steffen
    Rohlfs, Juergen
    MANUSCRIPTA MATHEMATICA, 2016, 149 (3-4) : 283 - 295
  • [4] INCREASE IN EULER-POINCARE CHARACTERISTICS
    MALLIAVI.MP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (22): : 1155 - &
  • [5] Euler-Poincare characteristics of abelian varieties
    Coates, J
    Sujatha, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (04): : 309 - 313
  • [6] EULER-POINCARE CHARACTERISTICS AND PRODUCT OF CHARACTERS
    LASCOUX, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (10): : 447 - 450
  • [7] Computing the Euler-Poincare characteristics of sign conditions
    Basu, S
    Pollack, R
    Roy, MF
    COMPUTATIONAL COMPLEXITY, 2005, 14 (01) : 53 - 71
  • [8] Euler-Poincare characteristics of classes of disordered media
    Arns, CH
    Knackstedt, MA
    Pinczewski, WV
    Mecke, KR
    PHYSICAL REVIEW E, 2001, 63 (03): : 311121 - 3111213
  • [9] EULER-POINCARE CHARACTERISTICS OF CONSTRUCTIBLE BUNDLES ON A SURFACE
    LAUMON, G
    ASTERISQUE, 1983, (101-) : 193 - 207
  • [10] The Clifford-cyclotomic group and Euler-Poincare characteristics
    Ingalls, Colin
    Jordan, Bruce W.
    Keeton, Allan
    Logan, Adam
    Zaytman, Yevgeny
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03): : 651 - 666