Equivariant Poincare series of filtrations and topology

被引:2
|
作者
Campillo, Antonio [1 ]
Delgado, Felix [1 ]
Gusein-Zade, Sabir M. [2 ]
机构
[1] Univ Valladolid, Inst Invest Matemat, ES-47011 Valladolid, Spain
[2] Moscow MV Lomonosov State Univ, Fac Math & Mech, Moscow 119991, Russia
来源
ARKIV FOR MATEMATIK | 2014年 / 52卷 / 01期
关键词
PLANE CURVE SINGULARITY;
D O I
10.1007/s11512-013-0188-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Earlier, for an action of a finite group G on a germ of an analytic variety, an equivariant G-Poincar, series of a multi-index filtration in the ring of germs of functions on the variety was defined as an element of the Grothendieck ring of G-sets with an additional structure. We discuss to which extent the G-Poincar, series of a filtration defined by a set of curve or divisorial valuations on the ring of germs of analytic functions in two variables determines the (equivariant) topology of the curve or of the set of divisors.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 50 条
  • [31] HOMOTOPY EQUIVALENCES IN EQUIVARIANT TOPOLOGY
    FUCHS, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A589 - A589
  • [32] POINCARE SERIES
    GUSEV, GI
    MATHEMATICAL NOTES, 1975, 17 (1-2) : 142 - 147
  • [33] The topology of equivariant Hilbert schemes
    Bejleri, Dori
    Zaimi, Gjergji
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2023, 10 (03)
  • [34] The topology of equivariant Hilbert schemes
    Dori Bejleri
    Gjergji Zaimi
    Research in the Mathematical Sciences, 2023, 10
  • [35] Local cohomology in equivariant topology
    Greenlees, JPC
    LOCAL COHOMOLOGY AND ITS APPLICATIONS, 1999, 226 : 1 - 38
  • [36] HOMOTOPY EQUIVALENCES IN EQUIVARIANT TOPOLOGY
    FUCHS, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) : 347 - 352
  • [37] POINCARE SERIES
    STROGALOV, SS
    MATHEMATICS OF THE USSR-IZVESTIYA, 1978, 12 (02): : 391 - 425
  • [38] Equivariant topology of configuration spaces
    Blagojevic, Pavle V. M.
    Lueck, Wolfgang
    Ziegler, Guenter M.
    JOURNAL OF TOPOLOGY, 2015, 8 (02) : 414 - 456
  • [39] TOPOLOGY - THE POINCARE CONJECTURE PROVED
    STEWART, I
    NATURE, 1986, 320 (6059) : 217 - 218
  • [40] Equivariant Euler-Poincare characteristic in sheaf cohomology
    Kionke, Steffen
    Rohlfs, Juergen
    MANUSCRIPTA MATHEMATICA, 2016, 149 (3-4) : 283 - 295