ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING

被引:34
|
作者
Fu, Anqi [1 ]
Zhang, Junzi [2 ]
Boyd, Stephen [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, ICME, Palo Alto, CA 94304 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2020年 / 42卷 / 06期
关键词
Anderson acceleration; nonsmooth convex optimization; parallel and distributed optimization; proximal oracles; stabilization; global convergence; pathological settings; ALTERNATING DIRECTION METHOD; CONVERGENCE; OPTIMIZATION; ALGORITHM; EQUATIONS;
D O I
10.1137/19M1290097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of nonsmooth convex optimization with linear equality constraints, where the objective function is only accessible through its proximal operator. This problem arises in many different fields such as statistical learning, computational imaging, telecommunications, and optimal control. To solve it, we propose an Anderson accelerated Douglas-Rachford splitting (A2DR) algorithm, which we show either globally converges or provides a certificate of infeasibility/unboundedness under very mild conditions. Applied to a block separable objective, A2DR partially decouples so that its steps may be carried out in parallel, yielding an algorithm that is fast and scalable to multiple processors. We describe an open-source implementation and demonstrate its performance on a wide range of examples.
引用
下载
收藏
页码:A3560 / A3583
页数:24
相关论文
共 50 条
  • [31] Tight global linear convergence rate bounds for Douglas-Rachford splitting
    Giselsson, Pontus
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) : 2241 - 2270
  • [32] On the Range of the Douglas-Rachford Operator
    Bauschke, Heinz H.
    Hare, Warren L.
    Moursi, Walaa M.
    MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (03) : 884 - 897
  • [33] Automatic knee joint segmentation using Douglas-Rachford splitting method
    Rini, C.
    Perumal, B.
    Rajasekaran, M. Pallikonda
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (9-10) : 6599 - 6621
  • [34] DOUGLAS-RACHFORD SPLITTING AND ADMM FOR NONCONVEX OPTIMIZATION: TIGHT CONVERGENCE RESULTS
    Themelis, Andreas
    Patrinos, Panagiotis
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 149 - 181
  • [35] SPARSITY-AWARE ADAPTIVE FILTERING BASED ON A DOUGLAS-RACHFORD SPLITTING
    Yamada, Isao
    Gandy, Silvia
    Yamagishi, Masao
    19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 1929 - 1933
  • [36] Douglas-Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator
    Moursi, Walaa M.
    Vandenberghe, Lieven
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (01) : 179 - 198
  • [37] Automatic knee joint segmentation using Douglas-Rachford splitting method
    C. Rini
    B. Perumal
    M. Pallikonda Rajasekaran
    Multimedia Tools and Applications, 2020, 79 : 6599 - 6621
  • [38] Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (14) : 1627 - 1644
  • [39] The error structure of the Douglas-Rachford splitting method for stiff linear problems
    Hansen, Eskil
    Ostermann, Alexander
    Schratz, Katharina
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 303 : 140 - 145
  • [40] ADAPTIVE DOUGLAS-RACHFORD SPLITTING ALGORITHM FROM A YOSIDA APPROXIMATION STANDPOINT
    Liu, Zihan
    Ramchandran, Kannan
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 1971 - 1998