ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING

被引:34
|
作者
Fu, Anqi [1 ]
Zhang, Junzi [2 ]
Boyd, Stephen [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, ICME, Palo Alto, CA 94304 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2020年 / 42卷 / 06期
关键词
Anderson acceleration; nonsmooth convex optimization; parallel and distributed optimization; proximal oracles; stabilization; global convergence; pathological settings; ALTERNATING DIRECTION METHOD; CONVERGENCE; OPTIMIZATION; ALGORITHM; EQUATIONS;
D O I
10.1137/19M1290097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of nonsmooth convex optimization with linear equality constraints, where the objective function is only accessible through its proximal operator. This problem arises in many different fields such as statistical learning, computational imaging, telecommunications, and optimal control. To solve it, we propose an Anderson accelerated Douglas-Rachford splitting (A2DR) algorithm, which we show either globally converges or provides a certificate of infeasibility/unboundedness under very mild conditions. Applied to a block separable objective, A2DR partially decouples so that its steps may be carried out in parallel, yielding an algorithm that is fast and scalable to multiple processors. We describe an open-source implementation and demonstrate its performance on a wide range of examples.
引用
收藏
页码:A3560 / A3583
页数:24
相关论文
共 50 条
  • [21] Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM
    Giselsson, Pontus
    Boyd, Stephen
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 532 - 544
  • [22] Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage
    Setzer, Simon
    [J]. SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2009, 5567 : 464 - 476
  • [23] Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions
    Cevher, Volkan
    Vu, Bang Cong
    Yurtsever, Alp
    [J]. LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 149 - 179
  • [24] Douglas-Rachford Splitting Method with Linearization for the Split Feasibility Problem
    Hu, Ziyue
    Dong, Qiaoli
    Tang, Yuchao
    Rassias, Michael Th
    [J]. SYMMETRY-BASEL, 2022, 14 (03):
  • [25] An inertial Douglas-Rachford splitting algorithm for nonconvex and nonsmooth problems
    Feng, Junkai
    Zhang, Haibin
    Zhang, Kaili
    Zhao, Pengfei
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17):
  • [26] Circumcentering the Douglas-Rachford method
    Behling, Roger
    Cruz, Jose Yunier Bello
    Santos, Luiz-Rafael
    [J]. NUMERICAL ALGORITHMS, 2018, 78 (03) : 759 - 776
  • [27] On the Range of the Douglas-Rachford Operator
    Bauschke, Heinz H.
    Hare, Warren L.
    Moursi, Walaa M.
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (03) : 884 - 897
  • [28] A parameterized Douglas-Rachford algorithm
    Wang, Dongying
    Wang, Xianfu
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 839 - 869
  • [29] Fixed Point Analysis of Douglas-Rachford Splitting for Ptychography and Phase Retrieval
    Fannjiang, Albert
    Zhangt, Zheqing
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (02): : 609 - 650
  • [30] Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems
    Li, Guoyin
    Pong, Ting Kei
    [J]. MATHEMATICAL PROGRAMMING, 2016, 159 (1-2) : 371 - 401