Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model

被引:18
|
作者
Odor, Geza [1 ]
Kelling, Jeffrey [2 ,3 ]
Gemming, Sibylle [2 ,3 ]
机构
[1] MTA TTK MFA Res Inst Nat Sci, H-1525 Budapest, Hungary
[2] Helmholtz Zentrum, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
[3] TU Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
GROWTH; BEHAVIOR; RENORMALIZATION; DEPOSITION; INVARIANCE; EXPONENTS;
D O I
10.1103/PhysRevE.89.032146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Extended dynamical simulations have been performed on a (2 + 1)-dimensional driven dimer lattice-gas model to estimate aging properties. The autocorrelation and the autoresponse functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the (2 + 1)-dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understanding of the universality class of that basic system.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Improved discretization of the Kardar-Parisi-Zhang equation
    Lam, CH
    Shin, FG
    PHYSICAL REVIEW E, 1998, 58 (05): : 5592 - 5595
  • [42] 3-DIMENSIONAL TOOM MODEL - CONNECTION TO THE ANISOTROPIC KARDAR-PARISI-ZHANG EQUATION
    BARABASI, AL
    ARAUJO, M
    STANLEY, HE
    PHYSICAL REVIEW LETTERS, 1992, 68 (25) : 3729 - 3732
  • [43] Hybridized discrete model for the anisotropic Kardar-Parisi-Zhang equation
    Kim, HJ
    Kim, IM
    Kim, JM
    PHYSICAL REVIEW E, 1998, 58 (01) : 1144 - 1147
  • [44] Kinetic roughening model with opposite Kardar-Parisi-Zhang nonlinearities
    da Silva, TJ
    Moreira, JG
    PHYSICAL REVIEW E, 2001, 63 (04):
  • [45] Kardar-Parisi-Zhang growth on one-dimensional decreasing substrates
    Carrasco, I. S. S.
    Oliveira, T. J.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [46] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Quastel, J. D.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 113 - 133
  • [47] Kardar-Parisi-Zhang growth in ε dimensions and beyond
    Halpin-Healy, Timothy
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [48] Numerical study of the Kardar-Parisi-Zhang equation
    Miranda, Vladimir G.
    Reis, Fabio D. A. Aarao
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [49] Kardar-Parisi-Zhang equation and the delta expansion
    Paul, I
    Tewari, S
    Bhattacharjee, JK
    PHYSICAL REVIEW E, 1997, 55 (03) : R2097 - R2099
  • [50] Kardar-Parisi-Zhang modes in d-dimensional directed polymers
    Schuetz, G. M.
    Wehefritz-Kaufmann, B.
    PHYSICAL REVIEW E, 2017, 96 (03):