Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model

被引:18
|
作者
Odor, Geza [1 ]
Kelling, Jeffrey [2 ,3 ]
Gemming, Sibylle [2 ,3 ]
机构
[1] MTA TTK MFA Res Inst Nat Sci, H-1525 Budapest, Hungary
[2] Helmholtz Zentrum, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
[3] TU Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
GROWTH; BEHAVIOR; RENORMALIZATION; DEPOSITION; INVARIANCE; EXPONENTS;
D O I
10.1103/PhysRevE.89.032146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Extended dynamical simulations have been performed on a (2 + 1)-dimensional driven dimer lattice-gas model to estimate aging properties. The autocorrelation and the autoresponse functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the (2 + 1)-dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understanding of the universality class of that basic system.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Nonlocal Kardar-Parisi-Zhang equation to model interface growth
    Kechagia, P
    Yortsos, YC
    Lichtner, P
    PHYSICAL REVIEW E, 2001, 64 (01):
  • [32] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Corwin, Ivan
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
  • [33] Slow crossover to Kardar-Parisi-Zhang scaling
    Blythe, RA
    Evans, MR
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [34] Kardar-Parisi-Zhang universality of the Nagel-Schreckenberg model
    de Gier, Jan
    Schadschneider, Andreas
    Schmidt, Johannes
    Schuetz, Gunter M.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [35] GLASSY SOLUTIONS OF THE KARDAR-PARISI-ZHANG EQUATION
    MOORE, MA
    BLUM, T
    DOHERTY, JP
    MARSILI, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (21) : 4257 - 4260
  • [36] Topology and the Kardar-Parisi-Zhang universality class
    Santalla, Silvia N.
    Rodriguez-Laguna, Javier
    Celi, Alessio
    Cuerno, Rodolfo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [37] Pseudospectral method for the Kardar-Parisi-Zhang equation
    Giada, L
    Giacometti, A
    Rossi, M
    PHYSICAL REVIEW E, 2002, 65 (03):
  • [38] ANHARMONIC ELASTICITY OF SMECTICS-A AND THE KARDAR-PARISI-ZHANG MODEL
    GOLUBOVIC, L
    WANG, ZG
    PHYSICAL REVIEW LETTERS, 1992, 69 (17) : 2535 - 2538
  • [39] The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class
    Sasamoto, Tomohiro
    Spohn, Herbert
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [40] Slow decorrelations in Kardar-Parisi-Zhang growth
    Ferrari, Patrik L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,