Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model

被引:18
|
作者
Odor, Geza [1 ]
Kelling, Jeffrey [2 ,3 ]
Gemming, Sibylle [2 ,3 ]
机构
[1] MTA TTK MFA Res Inst Nat Sci, H-1525 Budapest, Hungary
[2] Helmholtz Zentrum, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
[3] TU Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
GROWTH; BEHAVIOR; RENORMALIZATION; DEPOSITION; INVARIANCE; EXPONENTS;
D O I
10.1103/PhysRevE.89.032146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Extended dynamical simulations have been performed on a (2 + 1)-dimensional driven dimer lattice-gas model to estimate aging properties. The autocorrelation and the autoresponse functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the (2 + 1)-dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understanding of the universality class of that basic system.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A discrete model of the quenched Kardar-Parisi-Zhang equation
    Song, Hyun Suk
    Kim, Jin Min
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 51 (05) : 1630 - 1634
  • [22] Universality in two-dimensional Kardar-Parisi-Zhang growth
    Reis, FDAA
    PHYSICAL REVIEW E, 2004, 69 (02)
  • [23] High dimensional behavior of the Kardar-Parisi-Zhang growth dynamics
    Castellano, C
    Gabrielli, A
    Marsili, M
    Munoz, MA
    Pietronero, L
    PHYSICAL REVIEW E, 1998, 58 (05): : R5209 - R5212
  • [24] Smooth surface solutions of the Kardar-Parisi-Zhang equation in dimensions higher than 2+1
    Honda, K
    Matsuyama, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (10) : 3236 - 3243
  • [25] 1 Kardar-Parisi-Zhang universality class of a discrete erosion model
    Nath, Palash
    Mandal, Pradipta Kumar
    Jana, Debnarayan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (05):
  • [26] Generalized discretization of the Kardar-Parisi-Zhang equation
    Buceta, RC
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [27] Sinc noise for the Kardar-Parisi-Zhang equation
    Niggemann, Oliver
    Hinrichsen, Haye
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [28] Kardar-Parisi-Zhang Interfaces with Inward Growth
    Fukai, Yohsuke T.
    Takeuchi, Kazumasa A.
    PHYSICAL REVIEW LETTERS, 2017, 119 (03)
  • [29] Universality classes of the Kardar-Parisi-Zhang equation
    Canet, L.
    Moore, M. A.
    PHYSICAL REVIEW LETTERS, 2007, 98 (20)