On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations

被引:3
|
作者
Zhang, Qian [1 ]
Zhang, Yehua [1 ]
机构
[1] Hebei Univ, Sch Math & Informat Sci, Hebei Key Lab Machine Learning & Computat Intelli, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
global well-posedness; Keller-Segel equations; Navier-Stokes equations; CHEMOTAXIS SYSTEM; BLOW-UP; SPERM-ATTRACTANT; CHEMICAL-ASPECTS; WEAK SOLUTIONS; MODEL; EXISTENCE; MASS; STABILIZATION; AGGREGATION;
D O I
10.1002/zamm.201900024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Keller-Segel-Navier-Stokes system {rho t+u center dot del rho=Delta rho- del center dot(rho del c)-rho 2, c(t)+u center dot del c=Delta c-c+rho, u(t)+u center dot del u+ del P=Delta u-rho del phi, del center dot u=0, is considered in R2. It is proved that we obtain the existence and uniqueness of weak solutions for the two dimensional incompressible Keller-Segel-Navier-Stokes equations for a large class of initial data by using Fourier localization technique.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Global well-posedness for the 3D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [2] On the global well-posedness for the 3D axisymmetric incompressible Keller-Segel-Navier-Stokes equations
    Hua, Qiang
    Zhang, Qian
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (05):
  • [3] Global Well-Posedness for the 2D Keller-Segel-Navier-Stokes System with Fractional Diffusion
    Wang, Chaoyong
    Jia, Qi
    Zhang, Qian
    [J]. Acta Applicandae Mathematicae, 2024, 194 (01)
  • [4] Global well-posedness for the 3D incompressible Keller–Segel–Navier–Stokes equations
    Qian Zhang
    Yehua Zhang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [5] On the global well-posedness for the 3D axisymmetric incompressible Keller–Segel–Navier–Stokes equations
    Qiang Hua
    Qian Zhang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [6] Well-posedness of Keller-Segel-Navier-Stokes equations with fractional diffusion in Besov spaces
    Jiang, Ziwen
    Wang, Lizhen
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [7] Global Existence of Weak Solutions for the 2D Incompressible Keller-Segel-Navier-Stokes Equations with Partial Diffusion
    Jijie Zhao
    Xiaoyu Chen
    Qian Zhang
    [J]. Acta Applicandae Mathematicae, 2022, 181
  • [8] Global Existence of Weak Solutions for the 2D Incompressible Keller-Segel-Navier-Stokes Equations with Partial Diffusion
    Zhao, Jijie
    Chen, Xiaoyu
    Zhang, Qian
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2022, 181 (01)
  • [9] Well-posedness and time decay of fractional Keller-Segel-Navier-Stokes equations in homogeneous Besov spaces
    Jiang, Ziwen
    Wang, Lizhen
    [J]. MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 3107 - 3142
  • [10] Global well-posedness for the 2D incompressible four-component chemotaxis-Navier-Stokes equations
    Zhang, Qian
    Wang, Peiguang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (02) : 1656 - 1692