On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations

被引:3
|
作者
Zhang, Qian [1 ]
Zhang, Yehua [1 ]
机构
[1] Hebei Univ, Sch Math & Informat Sci, Hebei Key Lab Machine Learning & Computat Intelli, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
global well-posedness; Keller-Segel equations; Navier-Stokes equations; CHEMOTAXIS SYSTEM; BLOW-UP; SPERM-ATTRACTANT; CHEMICAL-ASPECTS; WEAK SOLUTIONS; MODEL; EXISTENCE; MASS; STABILIZATION; AGGREGATION;
D O I
10.1002/zamm.201900024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Keller-Segel-Navier-Stokes system {rho t+u center dot del rho=Delta rho- del center dot(rho del c)-rho 2, c(t)+u center dot del c=Delta c-c+rho, u(t)+u center dot del u+ del P=Delta u-rho del phi, del center dot u=0, is considered in R2. It is proved that we obtain the existence and uniqueness of weak solutions for the two dimensional incompressible Keller-Segel-Navier-Stokes equations for a large class of initial data by using Fourier localization technique.
引用
收藏
页数:20
相关论文
共 50 条