Global well-posedness of the Navier-Stokes-omega equations

被引:5
|
作者
Fan, Jishan [2 ]
Zhou, Yong [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
关键词
Navier-Stokes-omega; Turbulence model; Global well-posedness;
D O I
10.1016/j.aml.2011.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, we prove that the local solution to the Navier-Stokes-omega equations is unique when the spatial dimension n satisfies 3 <= n <= 6. Then, a regularity criterion is established for any n >= 3. As a corollary, it is proved that the smooth solution exists globally when 3 <= n <= 6. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1915 / 1918
页数:4
相关论文
共 50 条
  • [1] Well-posedness for the Navier-Stokes equations
    Koch, H
    Tataru, D
    ADVANCES IN MATHEMATICS, 2001, 157 (01) : 22 - 35
  • [2] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [3] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148
  • [4] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148
  • [5] Global well-posedness to the incompressible Navier-Stokes equations with damping
    Zhong, Xin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (62)
  • [6] Global well-posedness of coupled Navier-Stokes and Darcy equations
    Cui, Meiying
    Dong, Wenchao
    Guo, Zhenhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 388 : 82 - 111
  • [7] WELL-POSEDNESS OF THE HYDROSTATIC NAVIER-STOKES EQUATIONS
    Gerard-Varet, David
    Masmoudi, Nader
    Vicol, Vlad
    ANALYSIS & PDE, 2020, 13 (05): : 1417 - 1455
  • [8] Well-posedness of the generalized Navier–Stokes equations with damping
    Liu, Hui
    Lin, Lin
    Sun, Chengfeng
    Applied Mathematics Letters, 2021, 121
  • [9] Well-posedness of the Navier-Stokes-Maxwell equations
    Germain, Pierre
    Ibrahim, Slim
    Masmoudi, Nader
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (01) : 71 - 86
  • [10] GLOBAL WELL-POSEDNESS FOR NAVIER-STOKES-DARCY EQUATIONS WITH THE FREE INTERFACE
    Zhao, Bin
    Zhang, Mingyue
    Liang, Chuangchuang
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (05) : 569 - 619