Global well-posedness to the incompressible Navier-Stokes equations with damping

被引:12
|
作者
Zhong, Xin [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国博士后科学基金;
关键词
Navier-Stokes equations; global well-posedness; damping; UNIQUENESS;
D O I
10.14232/ejqtde.2017.1.62
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem of the 3D incompressible Navier-Stokes equations with nonlinear damping term alpha vertical bar u vertical bar(beta-1)u (alpha > 0 and beta >= 1). It is shown that the strong solution exists globally for any beta >= 1.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Well-posedness of the generalized Navier-Stokes equations with damping
    Liu, Hui
    Lin, Lin
    Sun, Chengfeng
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 121
  • [2] Global Well-Posedness of Incompressible Navier-Stokes Equations with Two Slow Variables
    Peng, Weimin
    Zhou, Yi
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (03) : 787 - 794
  • [3] Global well-posedness of incompressible Navier-Stokes equations with two slow variables
    Weimin Peng
    Yi Zhou
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 787 - 794
  • [4] Global Well-Posedness of Incompressible Navier-Stokes Equations with Two Slow Variables
    Weimin PENG
    Yi ZHOU
    [J]. Chinese Annals of Mathematics,Series B, 2017, (03) : 787 - 794
  • [5] Well-posedness for the Navier-Stokes equations
    Koch, H
    Tataru, D
    [J]. ADVANCES IN MATHEMATICS, 2001, 157 (01) : 22 - 35
  • [6] GLOBAL WELL-POSEDNESS OF 3D INCOMPRESSIBLE INHOMOGENEOUS NAVIER-STOKES EQUATIONS
    Qian, Chenyin
    Zhang, Ping
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2021, 28 (04) : 507 - 546
  • [7] Global Well-Posedness of the Generalized Incompressible Navier-Stokes Equations with Large Initial Data
    Liu, Qiao
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2549 - 2564
  • [8] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    [J]. Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [9] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    [J]. Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148
  • [10] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148