Well-posedness of Keller-Segel-Navier-Stokes equations with fractional diffusion in Besov spaces

被引:0
|
作者
Jiang, Ziwen [1 ]
Wang, Lizhen [1 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Fractional Keller-Segel-Navier-Stokes system; Well-posedness; Homogeneous Besov spaces; Mild solution; GLOBAL EXISTENCE; CHEMOTAXIS; SYSTEM; LAPLACIAN; MODELS;
D O I
10.1007/s00033-024-02268-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Cauchy problem of Keller-Segel-Navier-Stokes system with fractional diffusion. Making use of Fourier localization technique and Littlewood-Paley theory, we establish the global well-posedness of mild solution for small initial data in mixed time-space Besov spaces. Furthermore, we obtain the well-posedness of mild solution in time-weighted Besov spaces by Banach fixed point theorem.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Well-posedness and time decay of fractional Keller-Segel-Navier-Stokes equations in homogeneous Besov spaces
    Jiang, Ziwen
    Wang, Lizhen
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 3107 - 3142
  • [2] Global Well-Posedness for the 2D Keller-Segel-Navier-Stokes System with Fractional Diffusion
    Wang, Chaoyong
    Jia, Qi
    Zhang, Qian
    ACTA APPLICANDAE MATHEMATICAE, 2024, 194 (01)
  • [3] On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [4] Analyticity and Existence of the Keller-Segel-Navier-Stokes Equations in Critical Besov Spaces
    Yang, Minghua
    Fu, Zunwei
    Liu, Suying
    ADVANCED NONLINEAR STUDIES, 2018, 18 (03) : 517 - 535
  • [5] Global well-posedness for the 3D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [6] On the global well-posedness for the 3D axisymmetric incompressible Keller-Segel-Navier-Stokes equations
    Hua, Qiang
    Zhang, Qian
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (05):
  • [7] Well-Posedness of Mild Solutions for the Fractional Navier–Stokes Equations in Besov Spaces
    Xuan-Xuan Xi
    Yong Zhou
    Mimi Hou
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [8] Well-Posedness of Mild Solutions for the Fractional Navier-Stokes Equations in Besov Spaces
    Xi, Xuan-Xuan
    Zhou, Yong
    Hou, Mimi
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [9] Various regularity estimates for the Keller-Segel-Navier-Stokes system in Besov spaces
    Takeuchi, Taiki
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 343 : 606 - 658
  • [10] Global solution with partial large initial data to the Keller-Segel-Navier-Stokes equations in Besov spaces
    Zhou, Xuhuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):