Well-posedness of Keller-Segel-Navier-Stokes equations with fractional diffusion in Besov spaces

被引:0
|
作者
Jiang, Ziwen [1 ]
Wang, Lizhen [1 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Fractional Keller-Segel-Navier-Stokes system; Well-posedness; Homogeneous Besov spaces; Mild solution; GLOBAL EXISTENCE; CHEMOTAXIS; SYSTEM; LAPLACIAN; MODELS;
D O I
10.1007/s00033-024-02268-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Cauchy problem of Keller-Segel-Navier-Stokes system with fractional diffusion. Making use of Fourier localization technique and Littlewood-Paley theory, we establish the global well-posedness of mild solution for small initial data in mixed time-space Besov spaces. Furthermore, we obtain the well-posedness of mild solution in time-weighted Besov spaces by Banach fixed point theorem.
引用
收藏
页数:21
相关论文
共 50 条