Global Existence of Weak Solutions for the 2D Incompressible Keller-Segel-Navier-Stokes Equations with Partial Diffusion

被引:2
|
作者
Zhao, Jijie [1 ]
Chen, Xiaoyu [1 ]
Zhang, Qian [1 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Hebei Key Lab Machine Learning & Computat Intelli, Baoding 071002, Peoples R China
关键词
Keller-Segel equations; Navier-Stokes equations; Global existence; WELL-POSEDNESS; SPERM-ATTRACTANT; CHEMICAL-ASPECTS; BLOW-UP; CHEMOTAXIS; MODEL; MASS; BOUNDEDNESS; CORALS; SYSTEM;
D O I
10.1007/s10440-022-00529-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the global existence of weak solutions for the incompressible Keller-Segel-Navier-Stokes equation with partial diffusion in R-2. For the lack of diffusion Delta rho, we explore the structure of the equations and construct a priori estimates. With the help of uniform boundedness, we obtain the desired results.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Global Existence of Weak Solutions for the 2D Incompressible Keller-Segel-Navier-Stokes Equations with Partial Diffusion
    Jijie Zhao
    Xiaoyu Chen
    Qian Zhang
    [J]. Acta Applicandae Mathematicae, 2022, 181
  • [2] Global existence of weak solutions for the 3D incompressible Keller-Segel-Navier-Stokes equations with partial diffusion
    Zhao, Jijie
    Chen, Xiaoyu
    Zhang, Qian
    [J]. APPLICABLE ANALYSIS, 2024, 103 (01) : 353 - 376
  • [3] On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [4] Uniqueness of weak solutions to a Keller-Segel-Navier-Stokes system
    Chen, Miaochao
    Lu, Shengqi
    Liu, Qilin
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 121
  • [5] Global well-posedness for the 3D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [6] Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion
    Zheng, Jiashan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) : 2606 - 2629
  • [7] Existence of generalized solutions for Keller-Segel-Navier-Stokes equations with degradation in dimension three
    Kang, Kyungkeun
    Kim, Dongkwang
    [J]. MATHEMATICS IN ENGINEERING, 2022, 4 (05):
  • [8] Global Well-Posedness for the 2D Keller-Segel-Navier-Stokes System with Fractional Diffusion
    Wang, Chaoyong
    Jia, Qi
    Zhang, Qian
    [J]. Acta Applicandae Mathematicae, 2024, 194 (01)
  • [9] On the global well-posedness for the 3D axisymmetric incompressible Keller-Segel-Navier-Stokes equations
    Hua, Qiang
    Zhang, Qian
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (05):
  • [10] EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR A TWO-DIMENSIONAL KELLER-SEGEL-NAVIER-STOKES SYSTEM WITH POROUS MEDIUM DIFFUSION AND ROTATIONAL FLUX
    Wang, Lingzhu
    Xie, Li
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,