Global existence of weak solutions for the 3D incompressible Keller-Segel-Navier-Stokes equations with partial diffusion

被引:0
|
作者
Zhao, Jijie [1 ]
Chen, Xiaoyu [1 ]
Zhang, Qian [1 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Hebei Key Lab Machine Learning & Computat Intellig, Baoding, Peoples R China
关键词
Keller-Segel equations; Navier-Stokes equations; global existence; weak solutions; WELL-POSEDNESS; SPERM-ATTRACTANT; CHEMICAL-ASPECTS; BLOW-UP; CHEMOTAXIS; MODEL; MASS; BOUNDEDNESS; CORALS; SYSTEM;
D O I
10.1080/00036811.2023.2187382
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of the 3D incompressible Keller-Segel-Navier-Stokes equations with partial diffusion, namely we remove the diffusion delta rho. Using the damping effect of the growth term -rho(3) and the geometry of axisymmetric flow without swirl, we prove the global existence of weak solutions for the system.
引用
收藏
页码:353 / 376
页数:24
相关论文
共 50 条
  • [1] Global Existence of Weak Solutions for the 2D Incompressible Keller-Segel-Navier-Stokes Equations with Partial Diffusion
    Jijie Zhao
    Xiaoyu Chen
    Qian Zhang
    Acta Applicandae Mathematicae, 2022, 181
  • [2] Global Existence of Weak Solutions for the 2D Incompressible Keller-Segel-Navier-Stokes Equations with Partial Diffusion
    Zhao, Jijie
    Chen, Xiaoyu
    Zhang, Qian
    ACTA APPLICANDAE MATHEMATICAE, 2022, 181 (01)
  • [3] Global well-posedness for the 3D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [4] On the global well-posedness for the 3D axisymmetric incompressible Keller-Segel-Navier-Stokes equations
    Hua, Qiang
    Zhang, Qian
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (05):
  • [5] Uniqueness of weak solutions to a Keller-Segel-Navier-Stokes system
    Chen, Miaochao
    Lu, Shengqi
    Liu, Qilin
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [6] On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [7] Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion
    Zheng, Jiashan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) : 2606 - 2629
  • [8] Existence of generalized solutions for Keller-Segel-Navier-Stokes equations with degradation in dimension three
    Kang, Kyungkeun
    Kim, Dongkwang
    MATHEMATICS IN ENGINEERING, 2022, 4 (05):
  • [9] Global well-posedness for the 3D incompressible Keller–Segel–Navier–Stokes equations
    Qian Zhang
    Yehua Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [10] EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR A TWO-DIMENSIONAL KELLER-SEGEL-NAVIER-STOKES SYSTEM WITH POROUS MEDIUM DIFFUSION AND ROTATIONAL FLUX
    Wang, Lingzhu
    Xie, Li
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,