Global existence of weak solutions for the 3D incompressible Keller-Segel-Navier-Stokes equations with partial diffusion

被引:0
|
作者
Zhao, Jijie [1 ]
Chen, Xiaoyu [1 ]
Zhang, Qian [1 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Hebei Key Lab Machine Learning & Computat Intellig, Baoding, Peoples R China
关键词
Keller-Segel equations; Navier-Stokes equations; global existence; weak solutions; WELL-POSEDNESS; SPERM-ATTRACTANT; CHEMICAL-ASPECTS; BLOW-UP; CHEMOTAXIS; MODEL; MASS; BOUNDEDNESS; CORALS; SYSTEM;
D O I
10.1080/00036811.2023.2187382
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of the 3D incompressible Keller-Segel-Navier-Stokes equations with partial diffusion, namely we remove the diffusion delta rho. Using the damping effect of the growth term -rho(3) and the geometry of axisymmetric flow without swirl, we prove the global existence of weak solutions for the system.
引用
收藏
页码:353 / 376
页数:24
相关论文
共 50 条