Errors induced by spectral measurement positions and instrument noise in soil organic carbon prediction using vis-NIR on intact soil

被引:5
|
作者
Sun, Xiao-Lin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil spectroscopy; Error analysis; Sampling positions; Instrument noise; DIFFUSE-REFLECTANCE SPECTROSCOPY; IN-SITU; NEURAL-NETWORK; LEAST-SQUARES; CLAY CONTENT; MOISTURE; FIELD; PROPAGATION; ACCURACY;
D O I
10.1016/j.geoderma.2020.114731
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soil spectroscopy potentially would become a routine method for the measurement of soil properties in the field on soil cores. However, many factors could lead to errors in the measurement of spectra from intact soil cores. So far, errors induced by spectral measurement positions and instrument noise have rarely been quantified. The present study evaluated these errors based on 160 intact ring core samples collected from 20 profiles in a forest, southwest China. Each ring sample was scanned using a visible near-infrared (vis-NIR) spectrometer at nine evenly distributed positions at both ends of the ring to characterize within-sample variability. In addition, 10 scans were made at each position to characterize instrument error. A position spectrum was then calculated by averaging the 10 scans at each position, while a sample spectrum was calculated by averaging all 180 scans of each sample. The samples were then tested for soil organic carbon (SOC) content using the wet oxidation method. Based on the sample spectra and SOC content, a partial least squares regression (PLSR) model was calibrated. The modeling error was empirically calculated. Each scan, position spectrum, and sample spectrum was then fed into the calibrated PLSR model to predict SOC content, and the prediction results were evaluated for errors induced by instrument noise and different spectral measurement positions. Results showed that the error induced by different spectral measurement positions was about 75% of the modeling error, while the error induced by instrument noise was small and negligible. These three errors in terms of standard error of prediction (SEP) accounted for 18.6%, 23.8% and 1.46% of the average measured SOC content of the samples, respectively. Besides, the error due to different soil core sampling positions was also considerable. In terms of SEP, this error accounted for 12.5% of the average measured SOC content. These quantified error budgets would help to account for uncertainty in the measurement of soil properties using spectroscopy in the field.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China
    Bai, Zijin
    Xie, Modong
    Hu, Bifeng
    Luo, Defang
    Wan, Chang
    Peng, Jie
    Shi, Zhou
    SENSORS, 2022, 22 (16)
  • [22] Towards Optimal Variable Selection Methods for Soil Property Prediction Using a Regional Soil Vis-NIR Spectral Library
    Zhang, Xianglin
    Xue, Jie
    Xiao, Yi
    Shi, Zhou
    Chen, Songchao
    REMOTE SENSING, 2023, 15 (02)
  • [23] Vis-NIR soil spectral library of the Hungarian Soil Degradation Observation System
    Meszaros, Janos
    Kovacs, Zsofia
    Laszlo, Peter
    Vass-Meyndt, Szilvia
    Koos, Sandor
    Pirko, Bela
    Szucs-Vasarhelyi, Nora
    Bakacsi, Zsofia
    Laborczi, Annamaria
    Balog, Kitti
    Pasztor, Laszlo
    SCIENTIFIC DATA, 2025, 12 (01)
  • [24] Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis
    Chinilin, A. V.
    Vindeker, G. V.
    Savin, I. Yu.
    EURASIAN SOIL SCIENCE, 2023, 56 (11) : 1605 - 1617
  • [25] Impact of Spectral Resolution and Signal-to-Noise Ratio in Vis-NIR Spectrometry on Soil Organic Matter Estimation
    Yu, Bo
    Yuan, Jing
    Yan, Changxiang
    Xu, Jiawei
    Ma, Chaoran
    Dai, Hu
    REMOTE SENSING, 2023, 15 (18)
  • [26] Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis
    A. V. Chinilin
    G. V. Vindeker
    I. Yu. Savin
    Eurasian Soil Science, 2023, 56 : 1605 - 1617
  • [27] Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy
    Morellos, Antonios
    Pantazi, Xanthoula-Eirini
    Moshou, Dimitrios
    Alexandridis, Thomas
    Whetton, Rebecca
    Tziotzios, Georgios
    Wiebensohn, Jens
    Bill, Ralf
    Mouazen, Abdul M.
    BIOSYSTEMS ENGINEERING, 2016, 152 : 104 - 116
  • [28] A CNN model for predicting soil properties using VIS-NIR spectral data
    Hosseinpour-Zarnaq, Mohammad
    Omid, Mahmoud
    Sarmadian, Fereydoon
    Ghasemi-Mobtaker, Hassan
    ENVIRONMENTAL EARTH SCIENCES, 2023, 82 (16)
  • [29] Improving Soil Quality Index Prediction by Fusion of Vis-NIR and pXRF spectral data
    Song, Jianghui
    Shi, Xiaoyan
    Wang, Haijiang
    Lv, Xin
    Zhang, Wenxu
    Wang, Jingang
    Li, Tiansheng
    Li, Weidi
    GEODERMA, 2024, 447
  • [30] Prediction of soil properties based on characteristic wavelengths with optimal spectral resolution by using Vis-NIR spectroscopy
    Yu, Bo
    Yan, Changxiang
    Yuan, Jing
    Ding, Ning
    Chen, Zhiwei
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 293