Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis

被引:1
|
作者
Chinilin, A. V. [1 ]
Vindeker, G. V. [1 ]
Savin, I. Yu. [1 ,2 ]
机构
[1] Dokuchaev Soil Sci Inst, Moscow 119017, Russia
[2] PeoplesFriendship Univ Russia, RUDN Univ, Ecol Fac, Moscow 115093, Russia
关键词
proximal soil sensing; prediction; algorithm; model calibration; validation; NEAR-INFRARED SPECTROSCOPY; TOTAL NITROGEN; LEAST-SQUARES; REFLECTANCE; PREDICTION; FRACTIONS; DIVERSITY; ABUNDANCE; PH;
D O I
10.1134/S1064229323601841
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986-2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination "Vis-NIR spectroscopy AND soil organic carbon". The meta-analysis using the nonparametric one-sided Kruskal-Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (R2cv/val), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared.
引用
收藏
页码:1605 / 1617
页数:13
相关论文
共 50 条
  • [1] Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis
    A. V. Chinilin
    G. V. Vindeker
    I. Yu. Savin
    [J]. Eurasian Soil Science, 2023, 56 : 1605 - 1617
  • [2] Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy
    Sun, Wenjuan
    Li, Xinju
    Niu, Beibei
    [J]. PLOS ONE, 2018, 13 (04):
  • [3] Soil Organic Carbon Prediction Using Vis-NIR Spectroscopy with a Large Dataset
    Shi, Yang
    Wang, Rujing
    Wang, Yubing
    [J]. COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE XI, PT I, 2019, 545 : 76 - 86
  • [4] Using Vis-NIR Spectroscopy for Monitoring Temporal Changes in Soil Organic Carbon
    Deng, Fan
    Minasny, Budiman
    Knadel, Maria
    McBratney, Alex
    Heckrath, Goswin
    Greve, Mogens H.
    [J]. SOIL SCIENCE, 2013, 178 (08) : 389 - 399
  • [5] USING VIS-NIR SPECTROSCOPY TO ESTIMATE SOIL ORGANIC CONTENT
    Hu, Tao
    Qi, Kun
    Hu, Yi'na
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8263 - 8266
  • [6] Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy
    Nocita, Marco
    Stevens, Antoine
    Noon, Carole
    van Wesemael, Bas
    [J]. GEODERMA, 2013, 199 : 37 - 42
  • [7] Estimation of Organic Carbon in Anthropogenic Soil by VIS-NIR Spectroscopy: Effect of Variable Selection
    Xu, Lu
    Hong, Yongsheng
    Wei, Yu
    Guo, Long
    Shi, Tiezhu
    Liu, Yi
    Jiang, Qinghu
    Fei, Teng
    Liu, Yaolin
    Mouazen, Abdul M.
    Chen, Yiyun
    [J]. REMOTE SENSING, 2020, 12 (20) : 1 - 18
  • [8] Estimation of soil organic matter in Cambisol soil using vis-NIR spectroscopy
    Gonzalez-Aguiar, Diana
    Colas-Sanchez, Ariany
    Rodriguez-Lopez, Oralia
    Luisa Alvarez-Vazquez, Delia
    Gattorno-Munoz, Sirley
    Chacon-Iznaga, Ahmed
    [J]. CENTRO AGRICOLA, 2020, 47 (03): : 23 - 32
  • [9] Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy
    Jiang, Qinghu
    Chen, Yiyun
    Guo, Long
    Fei, Teng
    Qi, Kun
    [J]. REMOTE SENSING, 2016, 8 (09):
  • [10] On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning
    Nawar, S.
    Mouazen, A. M.
    [J]. SOIL & TILLAGE RESEARCH, 2019, 190 : 120 - 127