Linear recurrences associated to rays in Pascal's triangle and combinatorial identities

被引:25
|
作者
Belbachir, Hacene [1 ]
Komatsu, Takao [2 ]
Szalay, Laszlo [3 ]
机构
[1] USTHB, Fac Math, Algiers 16111, Algeria
[2] Hirosaki Univ, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
[3] Univ West Hungary, Inst Math, H-9400 Sopron, Hungary
基金
日本学术振兴会;
关键词
Pascal triangles; linear recurrences; combinatorial properties; CHEBYSHEV;
D O I
10.2478/s12175-014-0203-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main purpose is to describe the recurrence relation associated to the sum of diagonal elements laying along a finite ray crossing Pascal's triangle. We precise the generating function of the sequence of described sums. We also answer a question of Horadam posed in his paper [Chebyshev and Pell connections, Fibonacci Quart. 43 (2005), 108-121]. Further, using Morgan-Voyce sequence, we establish the nice identity of Fibonacci numbers, where i is the imaginary unit. Finally, connections to continued fractions, bivariate polynomials and finite differences are given.
引用
收藏
页码:287 / 300
页数:14
相关论文
共 50 条
  • [21] Surds from Pascal's triangle
    Stephenson, Paul
    MATHEMATICAL GAZETTE, 2020, 104 (561): : 552 - 553
  • [22] FINITE SUMS IN PASCAL'S TRIANGLE
    Sofo, A.
    FIBONACCI QUARTERLY, 2012, 50 (04): : 337 - 345
  • [23] On unimodality problems in Pascal's triangle
    Su, Xun-Tuan
    Wang, Yi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [24] Ramanujan Summation for Pascal's Triangle
    Kumar, A. Dinesh
    Sivaraman, R.
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 817 - 825
  • [25] Irrational dilations of Pascal's triangle
    Berend, D
    Boshernitzan, MD
    Kolesnik, G
    MATHEMATIKA, 2001, 48 (95-96) : 159 - 168
  • [26] Pascal's triangle and constructible polygons
    Luca, F
    UTILITAS MATHEMATICA, 2000, 58 : 209 - 214
  • [27] Integrating across Pascal's triangle
    Northshield, Sam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) : 385 - 393
  • [28] Pascal's Triangle Fractal Symmetries
    Myerson-Jain, Nayan E.
    Liu, Shang
    Ji, Wenjie
    Xu, Cenke
    Vijay, Sagar
    PHYSICAL REVIEW LETTERS, 2022, 128 (11)
  • [29] On p-adic complementary theorems between Pascal's triangle and the modified Pascal triangle
    Ando, S
    Sato, D
    FIBONACCI QUARTERLY, 2000, 38 (03): : 194 - 200
  • [30] SINGMASTER'S CONJECTURE IN THE INTERIOR OF PASCAL'S TRIANGLE
    Matomaki, Kaisa
    Radziwill, Maksym
    Shao, Xuancheng
    Tao, Terence
    Teravainen, Joni
    QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (03): : 1137 - 1177