Emerging Trends in Information-Driven Engineering of Complex Biological Systems

被引:13
|
作者
Steier, Anke [1 ]
Muniz, Ayse [2 ,3 ]
Neale, Dylan [2 ,4 ]
Lahann, Joerg [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Karlsruhe Inst Technol, Inst Funct Interfaces IFG, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Macromol Sci & Engn Program, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
3D microenvironments; biomateriomics; microprocessing; polymers; tissues engineering; NANO-STRUCTURED SURFACES; EXTRACELLULAR-MATRIX; FIBRONECTIN FIBRILLOGENESIS; DECELLULARIZED MATRIX; MECHANICAL-PROPERTIES; PROTEIN ADSORPTION; CELL-ADHESION; TISSUE; SCAFFOLDS; HYDROGELS;
D O I
10.1002/adma.201806898
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthetic biological systems are used for a myriad of applications, including tissue engineered constructs for in vivo use and microengineered devices for in vitro testing. Recent advances in engineering complex biological systems have been fueled by opportunities arising from the combination of bioinspired materials with biological and computational tools. Driven by the availability of large datasets in the "omics" era of biology, the design of the next generation of tissue equivalents will have to integrate information from single-cell behavior to whole organ architecture. Herein, recent trends in combining multiscale processes to enable the design of the next generation of biomaterials are discussed. Any successful microprocessing pipeline must be able to integrate hierarchical sets of information to capture key aspects of functional tissue equivalents. Micro- and biofabrication techniques that facilitate hierarchical control as well as emerging polymer candidates used in these technologies are also reviewed.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Information-driven modeling of biomolecular complexes
    van Noort, Charlotte W.
    Honorato, Rodrigo V.
    Bonvin, Alexandre M. J. J.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2021, 70 : 70 - 77
  • [22] Information-driven modelling of biomolecular complexes
    Bonvin, A. M. J. J.
    FEBS JOURNAL, 2007, 274 : 67 - 67
  • [23] Information-driven stock price comovement
    Box, Travis
    Shang, Danjue
    JOURNAL OF FINANCIAL RESEARCH, 2021, 44 (02) : 403 - 429
  • [24] A Maturity Model for the Information-Driven SME
    Parra, Xileidys
    Tort-Martorell, Xavier
    Ruiz-Vinals, Carmen
    Alvarez-Gomez, Fernando
    JOURNAL OF INDUSTRIAL ENGINEERING AND MANAGEMENT-JIEM, 2019, 12 (01): : 154 - 175
  • [25] Mutual Information-driven Pan-sharpening
    Zhou, Man
    Yan, Keyu
    Huang, Jie
    Yang, Zihe
    Fu, Xueyang
    Zhao, Feng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1788 - 1798
  • [26] Safety prognostic technology in complex petroleum engineering systems: progress, challenges and emerging trends
    Zhang Laibin
    Hu Jinqiu
    Petroleum Science, 2013, (04) : 486 - 493
  • [27] Safety prognostic technology in complex petroleum engineering systems: progress, challenges and emerging trends
    Zhang Laibin
    Hu Jinqiu
    PETROLEUM SCIENCE, 2013, 10 (04) : 486 - 493
  • [28] Safety prognostic technology in complex petroleum engineering systems: progress, challenges and emerging trends
    Zhang Laibin
    Hu Jinqiu
    Petroleum Science, 2013, 10 (04) : 486 - 493
  • [29] Epidemic dynamics on information-driven adaptive networks
    Zhan, Xiu-Xiu
    Liu, Chuang
    Sun, Gui-Quan
    Zhang, Zi-Ke
    CHAOS SOLITONS & FRACTALS, 2018, 108 : 196 - 204
  • [30] INFORMATION-DRIVEN ORGANIZATION OF VISUAL RECEPTIVE FIELDS
    Salge, Christoph
    Polani, Daniel
    ADVANCES IN COMPLEX SYSTEMS, 2009, 12 (03): : 311 - 326