Information-driven modeling of biomolecular complexes

被引:12
|
作者
van Noort, Charlotte W. [1 ]
Honorato, Rodrigo V. [1 ]
Bonvin, Alexandre M. J. J. [1 ]
机构
[1] Univ Utrecht, Bijvoet Ctr Biomol Res, Fac Sci, Dept Chem, Padualaan 8, NL-3584 CH Utrecht, Netherlands
基金
欧盟地平线“2020”;
关键词
PROTEIN-PROTEIN DOCKING; SMALL-ANGLE SCATTERING; MOLECULAR ARCHITECTURE; SAXS DATA; SERVER; RESTRAINTS; BENCHMARK; TOOLKIT;
D O I
10.1016/j.sbi.2021.05.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proteins play crucial roles in every cellular process by interacting with each other, nucleic acids, metabolites, and other molecules. The resulting assemblies can be very large and intricate and pose challenges to experimental methods. In the current era of integrative modeling, it is often only by a combination of various experimental techniques and computations that three-dimensional models of those molecular machines can be obtained. Among the various computational approaches available, molecular docking is often the method of choice when it comes to predicting three-dimensional structures of complexes. Docking can generate particularly accurate models when taking into account the available information on the complex of interest. We review here the use of experimental and bioinformatics data in protein-protein docking, describing recent software developments and highlighting applications for the modeling of antibody-antigen complexes and membrane protein complexes, and the use of evolutionary and shape information.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 50 条
  • [1] Information-driven modelling of biomolecular complexes
    Bonvin, A. M. J. J.
    FEBS JOURNAL, 2007, 274 : 67 - 67
  • [2] Modeling Antibody-Antigen Complexes by Information-Driven Docking
    Ambrosetti, Francesco
    Jimenez-Garcia, Brian
    Roel-Touris, Jorge
    Bonvin, Alexandre M. J. J.
    STRUCTURE, 2020, 28 (01) : 119 - +
  • [3] Information-Driven Modeling of Structures Using a Bayesian Framework
    Papadimitriou, Costas
    Argyris, Costas
    Panetsos, Panagiotis
    EXPERIMENTAL VIBRATION ANALYSIS FOR CIVIL STRUCTURES: TESTING, SENSING, MONITORING, AND CONTROL, 2018, 5 : 38 - 61
  • [4] THE INFORMATION-DRIVEN COMMUNITY
    SMITH, I
    HARTSHORN, A
    BRITISH JOURNAL OF HEALTHCARE COMPUTING & INFORMATION MANAGEMENT, 1994, 11 (03): : 22 - 23
  • [5] Defining the limits of homology modeling in information-driven protein docking
    Rodrigues, J. P. G. L. M.
    Melquiond, A. S. J.
    Karaca, E.
    Trellet, M.
    van Dijk, M.
    van Zundert, G. C. P.
    Schmitz, C.
    de Vries, S. J.
    Bordogna, A.
    Bonati, L.
    Kastritis, P. L.
    Bonvin, Alexandre M. J. J.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2013, 81 (12) : 2119 - 2128
  • [6] Information-Driven Path Planning
    Shi Bai
    Tixiao Shan
    Fanfei Chen
    Lantao Liu
    Brendan Englot
    Current Robotics Reports, 2021, 2 (2): : 177 - 188
  • [7] Information-Driven Collective Intelligences
    Fontana, Francesca Arcelli
    Formato, Ferrante
    Pareschi, Remo
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT II, 2010, 6422 : 352 - +
  • [8] Information-driven attentional capture
    Doyle, Alenka
    Volkova, Kamilla
    Crotty, Nicholas
    Massa, Nicole
    Grubb, Michael A.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2025, : 721 - 727
  • [9] LightDock goes information-driven
    Roel-Touris, Jorge
    Bonvin, Alexandre M. J. J.
    Jimenez-Garcia, Brian
    BIOINFORMATICS, 2020, 36 (03) : 950 - 952
  • [10] A Framework for Information-driven Manufacturing
    Friedemann, Marko
    Trapp, Thies Uwe
    Stoldt, Johannes
    Langer, Tino
    Putz, Matthias
    FACTORIES OF THE FUTURE IN THE DIGITAL ENVIRONMENT, 2016, 57 : 38 - 43