INFORMATION-DRIVEN ORGANIZATION OF VISUAL RECEPTIVE FIELDS

被引:3
|
作者
Salge, Christoph [1 ]
Polani, Daniel [2 ]
机构
[1] Univ Hertfordshire, Dept Comp Sci, Hatfield AL10 9AB, Herts, England
[2] Univ Hertfordshire, Adapt Syst Res Grp, Hatfield AL10 9AB, Herts, England
来源
ADVANCES IN COMPLEX SYSTEMS | 2009年 / 12卷 / 03期
关键词
Information theory; adaptive sensors;
D O I
10.1142/S0219525909002234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using information theory to reduce the state space of sensor arrays, such as receptive fields, for AI decision making we offer an adaptive algorithm without classical biases of hand coded approaches. This paper presents a way to build an acyclic directed graph to organize the sensor inputs of a visual receptive field. The Information Distance Metric is used to repeatedly select two sensors, which contain the most information about each other. Those are then encoded to a single variable, of equal alphabet size, with a deterministic mapping function that aims to create maximal entropy while maintaining a low information distance to the original sensors. The resulting tree determines which sensors are fused to reduce the input data while maintaining a maximum of information. The structure adapts to different environments of input images by encoding groups of preferred line structures or creating a higher resolution for areas with simulated movement. These effects are created without prior assumptions about the sensor statistics or the spatial configuration of the receptive field, and are cheap to compute since only pair-wise informational comparison of sensors is used.
引用
收藏
页码:311 / 326
页数:16
相关论文
共 50 条
  • [1] RECEPTIVE-FIELDS AND THE REPRESENTATION OF VISUAL INFORMATION
    ZUCKER, SW
    HUMMEL, RA
    [J]. HUMAN NEUROBIOLOGY, 1986, 5 (02) : 121 - 128
  • [2] Information-Driven Active Audio-Visual Source Localization
    Schult, Niclas
    Reineking, Thomas
    Kluss, Thorsten
    Zetzsche, Christoph
    [J]. PLOS ONE, 2015, 10 (09):
  • [3] THE INFORMATION-DRIVEN COMMUNITY
    SMITH, I
    HARTSHORN, A
    [J]. BRITISH JOURNAL OF HEALTHCARE COMPUTING & INFORMATION MANAGEMENT, 1994, 11 (03): : 22 - 23
  • [4] CORTICAL RECEPTIVE-FIELDS AND REPRESENTATION OF VISUAL INFORMATION
    WATSON, AB
    [J]. PERCEPTION, 1988, 17 (03) : 343 - 343
  • [5] ORGANIZATION OF VISUAL RECEPTIVE FIELDS OF NEURONS IN CAT COLLICULUS SUPERIOR
    HARUTIUN.B
    DEC, K
    WROBEL, A
    [J]. ACTA NEUROBIOLOGIAE EXPERIMENTALIS, 1973, 33 (03) : 563 - 573
  • [6] Information-Driven Path Planning
    Shi Bai
    Tixiao Shan
    Fanfei Chen
    Lantao Liu
    Brendan Englot
    [J]. Current Robotics Reports, 2021, 2 (2): : 177 - 188
  • [7] Information-Driven Collective Intelligences
    Fontana, Francesca Arcelli
    Formato, Ferrante
    Pareschi, Remo
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT II, 2010, 6422 : 352 - +
  • [8] LightDock goes information-driven
    Roel-Touris, Jorge
    Bonvin, Alexandre M. J. J.
    Jimenez-Garcia, Brian
    [J]. BIOINFORMATICS, 2020, 36 (03) : 950 - 952
  • [9] An information-driven approach to pharmacogenomics
    Vyas, H
    Summers, R
    [J]. PHARMACOGENOMICS, 2005, 6 (05) : 473 - 480
  • [10] A Framework for Information-driven Manufacturing
    Friedemann, Marko
    Trapp, Thies Uwe
    Stoldt, Johannes
    Langer, Tino
    Putz, Matthias
    [J]. FACTORIES OF THE FUTURE IN THE DIGITAL ENVIRONMENT, 2016, 57 : 38 - 43