INFORMATION-DRIVEN ORGANIZATION OF VISUAL RECEPTIVE FIELDS

被引:3
|
作者
Salge, Christoph [1 ]
Polani, Daniel [2 ]
机构
[1] Univ Hertfordshire, Dept Comp Sci, Hatfield AL10 9AB, Herts, England
[2] Univ Hertfordshire, Adapt Syst Res Grp, Hatfield AL10 9AB, Herts, England
来源
ADVANCES IN COMPLEX SYSTEMS | 2009年 / 12卷 / 03期
关键词
Information theory; adaptive sensors;
D O I
10.1142/S0219525909002234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using information theory to reduce the state space of sensor arrays, such as receptive fields, for AI decision making we offer an adaptive algorithm without classical biases of hand coded approaches. This paper presents a way to build an acyclic directed graph to organize the sensor inputs of a visual receptive field. The Information Distance Metric is used to repeatedly select two sensors, which contain the most information about each other. Those are then encoded to a single variable, of equal alphabet size, with a deterministic mapping function that aims to create maximal entropy while maintaining a low information distance to the original sensors. The resulting tree determines which sensors are fused to reduce the input data while maintaining a maximum of information. The structure adapts to different environments of input images by encoding groups of preferred line structures or creating a higher resolution for areas with simulated movement. These effects are created without prior assumptions about the sensor statistics or the spatial configuration of the receptive field, and are cheap to compute since only pair-wise informational comparison of sensors is used.
引用
收藏
页码:311 / 326
页数:16
相关论文
共 50 条
  • [41] ORGANIZATION OF 3-d BINOCULAR RECEPTIVE FIELDS OF NEURONS IN THE EARLY VISUAL CORTEX
    Ohzawa, Izumi
    Sasaki, Kota S.
    Tabuchi, Yuka
    [J]. JOURNAL OF PHYSIOLOGICAL SCIENCES, 2009, 59 : 79 - 79
  • [42] Local Diversity and Fine-Scale Organization of Receptive Fields in Mouse Visual Cortex
    Bonin, Vincent
    Histed, Mark H.
    Yurgenson, Sergey
    Reid, R. Clay
    [J]. JOURNAL OF NEUROSCIENCE, 2011, 31 (50): : 18506 - 18521
  • [43] Building Macromolecular Assemblies by Information-driven Docking
    Karaca, Ezgi
    Melquiond, Adrien S. J.
    de Vries, Sjoerd J.
    Kastritis, Panagiotis L.
    Bonvin, Alexandre M. J. J.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2010, 9 (08) : 1784 - 1794
  • [44] Information-driven robotic sampling in the coastal ocean
    Fossum, Trygve Olav
    Eidsvik, Jo
    Ellingsen, Ingrid
    Alver, Morten Omholt
    Fragoso, Glaucia Moreira
    Johnsen, Geir
    Mendes, Renato
    Ludvigsen, Martin
    Rajan, Kanna
    [J]. JOURNAL OF FIELD ROBOTICS, 2018, 35 (07) : 1101 - 1121
  • [45] Detecting Information-Driven Trading in a Dealers Market
    Hanousek, Jan
    Kopriva, Frantisek
    [J]. FINANCE A UVER-CZECH JOURNAL OF ECONOMICS AND FINANCE, 2011, 61 (03): : 204 - 229
  • [46] Guidelines towards Information-Driven Mobility Management
    Sofia, Rute C.
    [J]. FUTURE INTERNET, 2019, 11 (05):
  • [47] Prosodic Entrainment in an Information-Driven Dialog System
    Fandrianto, Andrew
    Eskenazi, Maxine
    [J]. 13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 342 - 345
  • [48] Information-driven marketing decisions: Development of strategic information systems
    Utter, D
    [J]. JOURNAL OF THE ACADEMY OF MARKETING SCIENCE, 1998, 26 (02) : 157 - 158
  • [49] RECEPTIVE FIELDS OF RABBIT VISUAL CORTEX
    ARDEN, GB
    HILL, RM
    IKEDA, H
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1967, 189 (02): : P73 - &
  • [50] Information-driven current in a quantum Maxwell demon
    Deffner, Sebastian
    [J]. PHYSICAL REVIEW E, 2013, 88 (06):