Resolvable orthogonal array-based uniform sliced Latin hypercube designs

被引:15
|
作者
Yang, Xue [1 ,2 ]
Chen, Hao [1 ,2 ,3 ]
Liu, Min-Qian [1 ,2 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[2] Nankai Univ, Inst Stat, Tianjin 300071, Peoples R China
[3] Tianjin Univ Finance & Econ, Dept Stat, Tianjin 300222, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Computer experiment; Centered L-2 discrepancy; Resolvable orthogonal array; Space-filling design; Sliced Lain hypercube design; SUPERSATURATED DESIGN; CONSTRUCTION; STRENGTH-3;
D O I
10.1016/j.spl.2014.06.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced Latin hypercube designs, introduced by Qian (2012), are widely used for computer experiments with qualitative and quantitative factors, multiple experiments, cross-validation and stochastic optimization. In this paper, we propose a new class of sliced Latin hypercube design, called the resolvable orthogonal array-based uniform sliced Latin hypercube design. Such designs are constructed via both symmetric and asymmetric resolvable orthogonal arrays, and measured by the centered L-2 discrepancy criterion. When the construction is based on a resolvable orthogonal array with strength w + 1, the resulting design not only possesses stratification in any w-dimensional projection for each slice, but also achieves stratification in any (w + 1)-dimensional projection for the whole design. Furthermore, the uniformity of the resulting design is also highly improved with respect to the centered L-2 discrepancy criterion. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 50 条
  • [41] A construction method for orthogonal Latin hypercube designs
    Steinberg, David M.
    Lin, Dennis K. J.
    BIOMETRIKA, 2006, 93 (02) : 279 - 288
  • [42] CONSTRUCTION OF NESTED ORTHOGONAL LATIN HYPERCUBE DESIGNS
    Yang, Jinyu
    Liu, Min-Qian
    Lin, Dennis K. J.
    STATISTICA SINICA, 2014, 24 (01) : 211 - 219
  • [43] Construction of nearly orthogonal Latin hypercube designs
    Li Gu
    Jian-Feng Yang
    Metrika, 2013, 76 : 819 - 830
  • [44] A CENTRAL LIMIT THEOREM FOR NESTED OR SLICED LATIN HYPERCUBE DESIGNS
    He, Xu
    Qian, Peter Z. G.
    STATISTICA SINICA, 2016, 26 (03) : 1117 - 1128
  • [45] Sliced Latin hypercube designs with both branching and nested factors
    Chen, Hao
    Yang, Jinyu
    Lin, Dennis K. J.
    Liu, Min-Qian
    STATISTICS & PROBABILITY LETTERS, 2019, 146 : 124 - 131
  • [46] Flexible sliced Latin hypercube designs with slices of different sizes
    Ru Yuan
    Bing Guo
    Min-Qian Liu
    Statistical Papers, 2021, 62 : 1117 - 1134
  • [47] Flexible sliced Latin hypercube designs with slices of different sizes
    Yuan, Ru
    Guo, Bing
    Liu, Min-Qian
    STATISTICAL PAPERS, 2021, 62 (03) : 1117 - 1134
  • [48] Uniform projection nested Latin hypercube designs
    Hao Chen
    Yan Zhang
    Xue Yang
    Statistical Papers, 2021, 62 : 2031 - 2045
  • [49] Uniform projection nested Latin hypercube designs
    Chen, Hao
    Zhang, Yan
    Yang, Xue
    STATISTICAL PAPERS, 2021, 62 (04) : 2031 - 2045
  • [50] A GENERAL THEORY FOR ORTHOGONAL ARRAY BASED LATIN HYPERCUBE SAMPLING
    Ai, Mingyao
    Kong, Xiangshun
    Li, Kang
    STATISTICA SINICA, 2016, 26 (02) : 761 - 777