Resolvable orthogonal array-based uniform sliced Latin hypercube designs

被引:15
|
作者
Yang, Xue [1 ,2 ]
Chen, Hao [1 ,2 ,3 ]
Liu, Min-Qian [1 ,2 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[2] Nankai Univ, Inst Stat, Tianjin 300071, Peoples R China
[3] Tianjin Univ Finance & Econ, Dept Stat, Tianjin 300222, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Computer experiment; Centered L-2 discrepancy; Resolvable orthogonal array; Space-filling design; Sliced Lain hypercube design; SUPERSATURATED DESIGN; CONSTRUCTION; STRENGTH-3;
D O I
10.1016/j.spl.2014.06.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced Latin hypercube designs, introduced by Qian (2012), are widely used for computer experiments with qualitative and quantitative factors, multiple experiments, cross-validation and stochastic optimization. In this paper, we propose a new class of sliced Latin hypercube design, called the resolvable orthogonal array-based uniform sliced Latin hypercube design. Such designs are constructed via both symmetric and asymmetric resolvable orthogonal arrays, and measured by the centered L-2 discrepancy criterion. When the construction is based on a resolvable orthogonal array with strength w + 1, the resulting design not only possesses stratification in any w-dimensional projection for each slice, but also achieves stratification in any (w + 1)-dimensional projection for the whole design. Furthermore, the uniformity of the resulting design is also highly improved with respect to the centered L-2 discrepancy criterion. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 50 条
  • [21] Nested Latin Hypercube Designs with Sliced Structures
    Chen, Hao
    Liu, Min-Qian
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (22) : 4721 - 4733
  • [22] ORTHOGONAL ARRAY-BASED LATIN HYPERCUBES
    TANG, B
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) : 1392 - 1397
  • [23] Orthogonal Latin hypercube designs from generalized orthogonal designs
    Georgiou, Stelios D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) : 1530 - 1540
  • [24] Construction of orthogonal Latin hypercube designs
    Sun, Fasheng
    Liu, Min-Qian
    Lin, Dennis K. J.
    BIOMETRIKA, 2009, 96 (04) : 971 - 974
  • [25] Construction of Latin hypercube designs with nested and sliced structures
    Bing Guo
    Xue-Ping Chen
    Min-Qian Liu
    Statistical Papers, 2020, 61 : 727 - 740
  • [26] Construction of Latin hypercube designs with nested and sliced structures
    Guo, Bing
    Chen, Xue-Ping
    Liu, Min-Qian
    STATISTICAL PAPERS, 2020, 61 (02) : 727 - 740
  • [27] BI-DIRECTIONAL SLICED LATIN HYPERCUBE DESIGNS
    Zhou, Qiang
    Jin, Tian
    Qian, Peter Z. G.
    Zhou, Shiyu
    STATISTICA SINICA, 2016, 26 (02) : 653 - 674
  • [28] CONSTRUCTION OF ORTHOGONAL AND NEARLY ORTHOGONAL LATIN HYPERCUBE DESIGNS FROM ORTHOGONAL DESIGNS
    Yang, Jinyu
    Liu, Min-Qian
    STATISTICA SINICA, 2012, 22 (01) : 433 - 442
  • [29] On the construction of nested orthogonal Latin hypercube designs
    Sukanta Dash
    Baidya Nath Mandal
    Rajender Parsad
    Metrika, 2020, 83 : 347 - 353
  • [30] CONSTRUCTION OF ORTHOGONAL SYMMETRIC LATIN HYPERCUBE DESIGNS
    Wang, Lin
    Sun, Fasheng
    Lin, Dennis K. J.
    Liu, Min-Qian
    STATISTICA SINICA, 2018, 28 (03) : 1503 - 1520