Resolvable orthogonal array-based uniform sliced Latin hypercube designs

被引:15
|
作者
Yang, Xue [1 ,2 ]
Chen, Hao [1 ,2 ,3 ]
Liu, Min-Qian [1 ,2 ]
机构
[1] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[2] Nankai Univ, Inst Stat, Tianjin 300071, Peoples R China
[3] Tianjin Univ Finance & Econ, Dept Stat, Tianjin 300222, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Computer experiment; Centered L-2 discrepancy; Resolvable orthogonal array; Space-filling design; Sliced Lain hypercube design; SUPERSATURATED DESIGN; CONSTRUCTION; STRENGTH-3;
D O I
10.1016/j.spl.2014.06.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced Latin hypercube designs, introduced by Qian (2012), are widely used for computer experiments with qualitative and quantitative factors, multiple experiments, cross-validation and stochastic optimization. In this paper, we propose a new class of sliced Latin hypercube design, called the resolvable orthogonal array-based uniform sliced Latin hypercube design. Such designs are constructed via both symmetric and asymmetric resolvable orthogonal arrays, and measured by the centered L-2 discrepancy criterion. When the construction is based on a resolvable orthogonal array with strength w + 1, the resulting design not only possesses stratification in any w-dimensional projection for each slice, but also achieves stratification in any (w + 1)-dimensional projection for the whole design. Furthermore, the uniformity of the resulting design is also highly improved with respect to the centered L-2 discrepancy criterion. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 50 条
  • [31] ORTHOGONAL LATIN HYPERCUBE DESIGNS FOR EIGHT FACTORS
    Singh, Poonam
    Kumar, Nilesh
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2023, 19 (01): : 427 - 434
  • [32] On second order orthogonal Latin hypercube designs
    Evangelaras, Haralambos
    Koutras, Markos V.
    JOURNAL OF COMPLEXITY, 2017, 39 : 111 - 121
  • [33] Construction of nearly orthogonal Latin hypercube designs
    Efthimiou, Ifigenia
    Georgiou, Stelios D.
    Liu, Min-Qian
    METRIKA, 2015, 78 (01) : 45 - 57
  • [34] Construction of nearly orthogonal Latin hypercube designs
    Gu, Li
    Yang, Jian-Feng
    METRIKA, 2013, 76 (06) : 819 - 830
  • [35] On the construction of nested orthogonal Latin hypercube designs
    Dash, Sukanta
    Mandal, Baidya Nath
    Parsad, Rajender
    METRIKA, 2020, 83 (03) : 347 - 353
  • [36] Orthogonal-maximin Latin hypercube designs
    Joseph, V. Roshan
    Hung, Ying
    STATISTICA SINICA, 2008, 18 (01) : 171 - 186
  • [37] A Note on the Construction of Orthogonal Latin Hypercube Designs
    Dey, Aloke
    Sarkar, Deepayan
    JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (03) : 105 - 111
  • [38] Construction of nearly orthogonal Latin hypercube designs
    Ifigenia Efthimiou
    Stelios D. Georgiou
    Min-Qian Liu
    Metrika, 2015, 78 : 45 - 57
  • [39] SOME CLASSES OF ORTHOGONAL LATIN HYPERCUBE DESIGNS
    Georgiou, Stelios D.
    Efthimiou, Ifigenia
    STATISTICA SINICA, 2014, 24 (01) : 101 - 120
  • [40] Orthogonal Latin Hypercube Designs for Three Columns
    Parui, Shyamsundar
    Mandal, B. N.
    Parsad, Rajender
    Dash, Sukanta
    UTILITAS MATHEMATICA, 2018, 108 : 149 - 158