Terrain Classification of Hyperspectral Remote Sensing Images Based on Kernel Maximum Margin Criterion

被引:0
|
作者
Liu, Jing [1 ]
Qiu, Cheng-cheng [1 ]
Liu, Yi [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Elect Engn, Xian, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
terrain classification; feature extraction; kernel maximum margin criterion (KMMC); hyperspectral remote sensing images; RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral remote sensing images have brought abundant spectral information for terrain classification. But the terrain classification of hyperspectral remote sensing images is confronted with the problems of high dimensionality and nonlinear separability, which lead to unsatisfied terrain classification rate. In order to raise the terrain classification recognition rate of hyperspectral remote sensing images, a new terrain classification method is presented based on kernel maximum margin criterion (KMMC), i.e., KMMC subspace method. Firstly, the original data are mapped to a high-dimensional kernel space by kernel method, and then the maximum margin criterion (MMC) is used to extract the nonlinear discriminant features of original data in the kernel space. Finally, the minimum Euclidean distance classifier is used to classify in the resulting KMMC feature subspace. Recognition results on account of an airborne visible / infrared imaging spectrometer (AVIRIS) hyperspectral remote sensing image show that, compared with the original space method, linear discriminant analysis (LDA) subspace method, MMC subspace method and kernel linear discriminant analysis (KLDA) subspace method, the proposed KMMC subspace method can significantly raise the recognition rate while reducing the dimensionality of the data.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] MAHALANOBIS KERNEL FOR THE CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Fauvel, M.
    Villa, A.
    Chanussot, J.
    Benediktsson, J. A.
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3724 - 3727
  • [42] Spectral feature extraction of hyperspectral remote sensing images based on class pair-weighted criterion
    Liu, Jing
    Li, Qingyan
    Liu, Yi
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [43] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    WANG Ke
    GU XingFa
    YU Tao
    MENG QingYan
    ZHAO LiMin
    FENG Li
    [J]. Science China(Technological Sciences)., 2013, 56 (04) - 988
  • [44] On the parallel classification system using hyperspectral images for remote sensing applications
    Garcia-Salgado, Beatriz P.
    Ponomaryov, Volodymyr I.
    Robles-Gonzalez, Marco A.
    Sadovnychiy, Sergiy
    [J]. REAL-TIME IMAGE AND VIDEO PROCESSING 2018, 2018, 10670
  • [45] Toward an optimal SVM classification system for hyperspectral remote sensing images
    Bazi, Yakoub
    Melgani, Farid
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11): : 3374 - 3385
  • [46] Parsimonious Gaussian Process Models for the Classification of Hyperspectral Remote Sensing Images
    Fauvel, Mathieu
    Bouveyron, Charles
    Girard, Stephane
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2423 - 2427
  • [47] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    Ke Wang
    XingFa Gu
    Tao Yu
    QingYan Meng
    LiMin Zhao
    Li Feng
    [J]. Science China Technological Sciences, 2013, 56 : 980 - 988
  • [48] Support vector machines for classification of hyperspectral remote-sensing images
    Melgani, F
    Bruzzone, L
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 506 - 508
  • [49] Improved Sequential Search Algorithms for Classification in Hyperspectral Remote Sensing Images
    Nakariyakul, Songyot
    [J]. OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY III, 2014, 9273
  • [50] Advances in semi-supervised classification of hyperspectral remote sensing images
    Yang, Xing
    Fang, Leyuan
    Yue, Jun
    [J]. National Remote Sensing Bulletin, 2024, 28 (01) : 19 - 41