Support vector machines for classification of hyperspectral remote-sensing images

被引:0
|
作者
Melgani, F [1 ]
Bruzzone, L [1 ]
机构
[1] Univ Trent, Dept Informat & Commun Technol, I-38050 Trent, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the problem of classification of hyperspectral remote-sensing images (in the original hyperdimensional feature space) by Support Vector Machines (SVMs). In particular, we investigate the effectiveness of SVMs in terms of classification accuracy, computational time and stability to parameter setting. Experiments, carried out on a standard AVIRIS hyperspectral data set, include a comparison with two other widely used nonparametric approaches, i.e., the K-nn and the Radial Basis Function (RBF) neural networks classifiers. The obtained results point out interesting properties of SVMs in hyperdimensional feature spaces and suggest them as a promising tool to classify hyperspectral remote-sensing images.
引用
收藏
页码:506 / 508
页数:3
相关论文
共 50 条
  • [1] Classification of hyperspectral remote sensing images with support vector machines
    Melgani, F
    Bruzzone, L
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08): : 1778 - 1790
  • [2] Support vector machines for hyperspectral remote sensing classification
    Gualtieri, JA
    Cromp, RF
    [J]. ADVANCES IN COMPUTER-ASSISTED RECOGNITION, 1999, 3584 : 221 - 232
  • [3] Support vector machines for remote-sensing image classification
    Roli, F
    Fumera, G
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VI, 2001, 4170 : 160 - 166
  • [4] CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES BY AN ENSEMBLE OF SUPPORT VECTOR MACHINES UNDER IMBALANCED DATA
    Eeti, Laxmi Narayana
    Buddhiraju, Krishna Mohan
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2659 - 2661
  • [5] Classification of Hyperspectral Images with Support Vector Machines
    Andreola, Rafaela
    Haertel, Vitor
    [J]. BOLETIM DE CIENCIAS GEODESICAS, 2010, 16 (02): : 210 - 231
  • [6] Support vector machines for classification in remote sensing
    Pal, M
    Mather, PM
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (05) : 1007 - 1011
  • [7] CONTEXTUAL REMOTE-SENSING IMAGE CLASSIFICATION BY SUPPORT VECTOR MACHINES AND MARKOV RANDOM FIELDS
    Moser, Gabriele
    Serpico, Sebastiano B.
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3728 - 3731
  • [8] Support Tensor Machines for Classification of Hyperspectral Remote Sensing Imagery
    Guo, Xian
    Huang, Xin
    Zhang, Lefei
    Zhang, Liangpei
    Plaza, Antonio
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3248 - 3264
  • [9] Feature selection and classification of hyperspectral images, with support vector machines
    Archibald, Rick
    Fann, George
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) : 674 - 677
  • [10] Classification of hyperspectral images with support vector machines: Multiclass strategies
    Bruzzone, L
    Melgani, F
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IX, 2004, 5238 : 408 - 419