Classification of hyperspectral remote sensing images with support vector machines

被引:3198
|
作者
Melgani, F [1 ]
Bruzzone, L [1 ]
机构
[1] Univ Trent, Dept Informat & Commun Technol, I-38050 Trento, Italy
来源
关键词
classification; feature reduction; Hughes phenomenon; hyperspectral images; multiclass problems; remote sensing; support vector machines (SVMs);
D O I
10.1109/TGRS.2004.831865
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs). First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces. Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities. To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (i.e., radial basis function neural networks and the K-nearest neighbor classifier). Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data. In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one:against-one, and two hierarchical tree-based strategies. Different performance indicators have been used to support our experimental studies in a detailed and accurate way, i.e., the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture. The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data.
引用
收藏
页码:1778 / 1790
页数:13
相关论文
共 50 条
  • [1] Support vector machines for classification of hyperspectral remote-sensing images
    Melgani, F
    Bruzzone, L
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 506 - 508
  • [2] Support vector machines for hyperspectral remote sensing classification
    Gualtieri, JA
    Cromp, RF
    [J]. ADVANCES IN COMPUTER-ASSISTED RECOGNITION, 1999, 3584 : 221 - 232
  • [3] CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES BY AN ENSEMBLE OF SUPPORT VECTOR MACHINES UNDER IMBALANCED DATA
    Eeti, Laxmi Narayana
    Buddhiraju, Krishna Mohan
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2659 - 2661
  • [4] Classification of Hyperspectral Images with Support Vector Machines
    Andreola, Rafaela
    Haertel, Vitor
    [J]. BOLETIM DE CIENCIAS GEODESICAS, 2010, 16 (02): : 210 - 231
  • [5] Support vector machines for classification in remote sensing
    Pal, M
    Mather, PM
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (05) : 1007 - 1011
  • [6] Support Tensor Machines for Classification of Hyperspectral Remote Sensing Imagery
    Guo, Xian
    Huang, Xin
    Zhang, Lefei
    Zhang, Liangpei
    Plaza, Antonio
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3248 - 3264
  • [7] Feature selection and classification of hyperspectral images, with support vector machines
    Archibald, Rick
    Fann, George
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) : 674 - 677
  • [8] Classification of hyperspectral images with support vector machines: Multiclass strategies
    Bruzzone, L
    Melgani, F
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IX, 2004, 5238 : 408 - 419
  • [9] Classification of hyperspectral images with nonlinear filtering and support vector machines
    Lennon, M
    Mercier, G
    Hubert-Moy, L
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1670 - 1672
  • [10] Support Vector Machine for classification of hyperspectral remote sensing imagery
    Dai, Chen-guang
    Huang, Xiao-bo
    Dong, Guang-jun
    [J]. FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 4, PROCEEDINGS, 2007, : 77 - 80