Support vector machines for classification of hyperspectral remote-sensing images

被引:0
|
作者
Melgani, F [1 ]
Bruzzone, L [1 ]
机构
[1] Univ Trent, Dept Informat & Commun Technol, I-38050 Trent, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the problem of classification of hyperspectral remote-sensing images (in the original hyperdimensional feature space) by Support Vector Machines (SVMs). In particular, we investigate the effectiveness of SVMs in terms of classification accuracy, computational time and stability to parameter setting. Experiments, carried out on a standard AVIRIS hyperspectral data set, include a comparison with two other widely used nonparametric approaches, i.e., the K-nn and the Radial Basis Function (RBF) neural networks classifiers. The obtained results point out interesting properties of SVMs in hyperdimensional feature spaces and suggest them as a promising tool to classify hyperspectral remote-sensing images.
引用
收藏
页码:506 / 508
页数:3
相关论文
共 50 条
  • [31] Remote Sensing Image Classification with Multiple Classifiers based on Support Vector Machines
    Wu, Wei
    Gao, Guanglai
    [J]. 2012 FIFTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2012), VOL 1, 2012, : 188 - 191
  • [32] Modified algorithm based on support vector machines for classification of hyperspectral images in a similarity space
    Hosseini, Reza Shah
    Homayouni, Saeid
    Safari, Reza
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2012, 6
  • [33] Ensemble of Support Vector Machines for spectral-spatial classification of hyperspectral and multispectral images
    Shad, Rouzbeh
    Seyyed-Al-hosseini, Seyyed Tohid
    Mehrani, Yaser Maghsoodi
    Ghaemi, Marjan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 42119 - 42146
  • [34] Ensemble of Support Vector Machines for spectral-spatial classification of hyperspectral and multispectral images
    Rouzbeh Shad
    Seyyed Tohid Seyyed-Al-hosseini
    Yaser Maghsoodi Mehrani
    Marjan Ghaemi
    [J]. Multimedia Tools and Applications, 2023, 82 : 42119 - 42146
  • [35] Support vector machine based classification for hyperspectral remote sensing images after minimum noise fraction rotation transformation
    Zhang Denghui
    Yu Le
    [J]. 2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL II, 2010, : 152 - 155
  • [36] Stochastic learning algorithms for the classification of remote-sensing images
    Diotalevi, F.
    Valle, M.
    [J]. Alta Frequenza Rivista Di Elettronica, 2001, 13 (05): : 60 - 64
  • [37] A novel binary tree support vector machine for hyperspectral remote sensing image classification
    Du, Peijun
    Tan, Kun
    Xing, Xiaoshi
    [J]. OPTICS COMMUNICATIONS, 2012, 285 (13-14) : 3054 - 3060
  • [38] A support vector domain description approach to supervised classification of remote sensing images
    Munoz-Mari, Jordi
    Bruzzone, Lorenzo
    Camps-Valls, Gustavo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (08): : 2683 - 2692
  • [39] Multi-Channel Morphological Profiles for Classification of Hyperspectral Images Using Support Vector Machines
    Plaza, Javier
    Plaza, Antonio J.
    Barra, Cristina
    [J]. SENSORS, 2009, 9 (01) : 196 - 218
  • [40] Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data
    Munoz-Mari, Jordi
    Bovolo, Francesca
    Gomez-Chova, Luis
    Bruzzone, Lorenzo
    Camps-Valls, Gustavo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (08): : 3188 - 3197