Terrain Classification of Hyperspectral Remote Sensing Images Based on Kernel Maximum Margin Criterion

被引:0
|
作者
Liu, Jing [1 ]
Qiu, Cheng-cheng [1 ]
Liu, Yi [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Elect Engn, Xian, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
terrain classification; feature extraction; kernel maximum margin criterion (KMMC); hyperspectral remote sensing images; RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral remote sensing images have brought abundant spectral information for terrain classification. But the terrain classification of hyperspectral remote sensing images is confronted with the problems of high dimensionality and nonlinear separability, which lead to unsatisfied terrain classification rate. In order to raise the terrain classification recognition rate of hyperspectral remote sensing images, a new terrain classification method is presented based on kernel maximum margin criterion (KMMC), i.e., KMMC subspace method. Firstly, the original data are mapped to a high-dimensional kernel space by kernel method, and then the maximum margin criterion (MMC) is used to extract the nonlinear discriminant features of original data in the kernel space. Finally, the minimum Euclidean distance classifier is used to classify in the resulting KMMC feature subspace. Recognition results on account of an airborne visible / infrared imaging spectrometer (AVIRIS) hyperspectral remote sensing image show that, compared with the original space method, linear discriminant analysis (LDA) subspace method, MMC subspace method and kernel linear discriminant analysis (KLDA) subspace method, the proposed KMMC subspace method can significantly raise the recognition rate while reducing the dimensionality of the data.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A deep learning based hybrid framework for semisupervised classification of hyperspectral remote sensing images
    Monika Sharma
    Mantosh Biswas
    [J]. Multimedia Tools and Applications, 2024, 83 : 55447 - 55470
  • [32] A deep learning based hybrid framework for semisupervised classification of hyperspectral remote sensing images
    Sharma, Monika
    Biswas, Mantosh
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55447 - 55470
  • [33] A new neuro-fuzzy-based classification approach for hyperspectral remote sensing images
    Nafiseh Kakhani
    Mehdi Mokhtarzade
    [J]. Journal of Earth System Science, 2019, 128
  • [34] Supervised farm classification from remote sensing images based on kernel adatron algorithm
    Gonzalez, Adrian
    Russel, Graham
    Marquez, Astrid
    Ali Moreno, Jose
    Garcia, Cristina
    Dominguez, Carlos
    Colmenares, Omar
    Jose Machado, Juan
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3345 - +
  • [35] Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
    Li, Chenming
    Yang, Simon X.
    Yang, Yao
    Gao, Hongmin
    Zhao, Jia
    Qu, Xiaoyu
    Wang, Yongchang
    Yao, Dan
    Gao, Jianbing
    [J]. SENSORS, 2018, 18 (10)
  • [36] MAHALANOBIS KERNEL FOR THE CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Fauvel, M.
    Villa, A.
    Chanussot, J.
    Benediktsson, J. A.
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3724 - 3727
  • [37] Spectral feature extraction of hyperspectral remote sensing images based on class pair-weighted criterion
    Liu, Jing
    Li, Qingyan
    Liu, Yi
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04):
  • [38] Extreme learning machines for soybean classification in remote sensing hyperspectral images
    Moreno, Ramon
    Corona, Francesco
    Lendasse, Amaury
    Grana, Manuel
    Galvao, Lenio S.
    [J]. NEUROCOMPUTING, 2014, 128 : 207 - 216
  • [39] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    WANG Ke
    GU XingFa
    YU Tao
    MENG QingYan
    ZHAO LiMin
    FENG Li
    [J]. Science China(Technological Sciences)., 2013, 56 (04) - 988
  • [40] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    Wang Ke
    Gu XingFa
    Yu Tao
    Meng QingYan
    Zhao LiMin
    Feng Li
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (04) : 980 - 988