Data-driven methods for discovery of next-generation electrostrictive materials

被引:6
|
作者
Trujillo, Dennis P. P. [1 ,2 ,3 ]
Gurung, Ashok [4 ]
Yu, Jiacheng [5 ]
Nayak, Sanjeev K. K. [1 ,2 ]
Alpay, S. Pamir [1 ,2 ,4 ]
Janolin, Pierre-Eymeric [5 ]
机构
[1] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[3] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA
[4] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[5] Univ Paris Saclay, CentraleSupelec, CNRS, Lab SPMS, F-91190 Gif Sur Yvette, France
关键词
TOTAL-ENERGY CALCULATIONS; GIANT ELECTROSTRICTION; SURFACE PHASE; OXYGEN;
D O I
10.1038/s41524-022-00941-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All dielectrics exhibit electrostriction, i.e., display a quadratic strain response to an electric field compared to the linear strain dependence of piezoelectrics. As such, there is significant interest in discovering new electrostrictors with enhanced electrostrictive coefficients, especially as electrostrictors can exhibit effective piezoelectricity when a bias electric field is applied. We present the results of a study combining data mining and first-principles computations that indicate that there exists a group of iodides, bromides, and chlorides that have electrostrictive coefficients exceeding 10 m(4) C-2 which are substantially higher than typical oxide electrostrictive ceramics and polymers. The corresponding effective piezoelectric voltage coefficients are three orders of magnitude larger than lead zirconate titanate.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery
    Oses, Corey
    Toher, Cormac
    Curtarolo, Stefano
    MRS BULLETIN, 2018, 43 (09) : 670 - 675
  • [42] Faux-Data Injection Optimization for Accelerating Data-Driven Discovery of Materials
    Ziaullah, Abdul Wahab
    Chawla, Sanjay
    El-Mellouhi, Fedwa
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2023, 12 (02) : 157 - 170
  • [43] Faux-Data Injection Optimization for Accelerating Data-Driven Discovery of Materials
    Abdul Wahab Ziaullah
    Sanjay Chawla
    Fedwa El-Mellouhi
    Integrating Materials and Manufacturing Innovation, 2023, 12 : 157 - 170
  • [44] Redesign Driven by Manufacturing Data for Next-Generation Modernization of Legacy Products
    Eddy, Douglas
    Krishnamurty, Sundar
    Carrara, Ryan
    SMART AND SUSTAINABLE MANUFACTURING SYSTEMS, 2022, 6 (01): : 158 - 176
  • [45] How the Shape of Chemical Data Can Enable Data-Driven Materials Discovery
    Cole, Jacqueline M.
    TRENDS IN CHEMISTRY, 2021, 3 (02): : 111 - 119
  • [46] Data-Driven Handover Optimization in Next Generation Mobile Communication Networks
    Lin, Po-Chiang
    Casanova, Lionel F. Gonzalez
    Fatty, Bakary K. S.
    MOBILE INFORMATION SYSTEMS, 2016, 2016
  • [47] Structural variation discovery with next-generation sequencing
    Gao, Jingyang
    Qi, Fei
    Guan, Rui
    2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 709 - 711
  • [48] ORNL next-generation materials research
    Hun, Diana E.
    Brewe, Jared
    PCI JOURNAL, 2024, 69 (05): : 19 - 24
  • [49] MATERIALS FOR THE NEXT-GENERATION OF AIRCRAFT ENGINEERS
    EDWARDS, A
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 1995, 67 (01): : 7 - 7
  • [50] NEW VIRUS DISCOVERY WITH NEXT-GENERATION SEQUENCING
    Wang Chunlin
    IFPT'6: PROGRESS ON POST-GENOME TECHNOLOGIES, PROCEEDINGS, 2009, : 42 - 42