Data-driven methods for discovery of next-generation electrostrictive materials

被引:6
|
作者
Trujillo, Dennis P. P. [1 ,2 ,3 ]
Gurung, Ashok [4 ]
Yu, Jiacheng [5 ]
Nayak, Sanjeev K. K. [1 ,2 ]
Alpay, S. Pamir [1 ,2 ,4 ]
Janolin, Pierre-Eymeric [5 ]
机构
[1] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[3] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA
[4] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[5] Univ Paris Saclay, CentraleSupelec, CNRS, Lab SPMS, F-91190 Gif Sur Yvette, France
关键词
TOTAL-ENERGY CALCULATIONS; GIANT ELECTROSTRICTION; SURFACE PHASE; OXYGEN;
D O I
10.1038/s41524-022-00941-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All dielectrics exhibit electrostriction, i.e., display a quadratic strain response to an electric field compared to the linear strain dependence of piezoelectrics. As such, there is significant interest in discovering new electrostrictors with enhanced electrostrictive coefficients, especially as electrostrictors can exhibit effective piezoelectricity when a bias electric field is applied. We present the results of a study combining data mining and first-principles computations that indicate that there exists a group of iodides, bromides, and chlorides that have electrostrictive coefficients exceeding 10 m(4) C-2 which are substantially higher than typical oxide electrostrictive ceramics and polymers. The corresponding effective piezoelectric voltage coefficients are three orders of magnitude larger than lead zirconate titanate.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Data-Driven Materials Discovery from Large Chemistry Spaces
    Tanaka, Isao
    MATTER, 2020, 3 (02) : 327 - 328
  • [32] Strategies and Challenges of Data-driven Research and Discovery in Luminescent Materials
    Huang, Lin
    Xie, Rongjun
    Faguang Xuebao/Chinese Journal of Luminescence, 2024, 45 (08): : 1219 - 1231
  • [33] A Bayesian Model for SNP Discovery Based on Next-Generation Sequencing Data
    Xu, Yanxun
    Zheng, Xiaofeng
    Yuan, Yuan
    Estecio, Marcos R.
    Issa, Jean-Pierre
    Ji, Yuan
    Liang, Shoudan
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 42 - 45
  • [34] RetroSeq: transposable element discovery from next-generation sequencing data
    Keane, Thomas M.
    Wong, Kim
    Adams, David J.
    BIOINFORMATICS, 2013, 29 (03) : 389 - 390
  • [35] Remote sensing of irrigation: Research trends and the direction to next-generation agriculture through data-driven scientometric analysis
    Manivasagam, V. S.
    WATER SECURITY, 2024, 21
  • [36] Data-driven drug discovery and repositioning by machine learning methods
    Yamanishi, Yoshihiro
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [37] Guest Editorial of the Special Section on Multimodal Data-Driven Decision-Making for Next-Generation Consumer Electronics
    Wang, Wei
    Mumtaz, Shahid
    Xiang, Joe
    Fang, Kai
    Wang, Tingting
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 5979 - 5982
  • [38] Discriminant Analysis and Normalization Methods for Next-Generation Sequencing Data
    Zhou, Yan
    Wang, Junhui
    Zhao, Yichuan
    Tong, Tiejun
    NEW FRONTIERS OF BIOSTATISTICS AND BIOINFORMATICS, 2018, : 365 - 384
  • [39] Bioinformatics Methods and Biological Interpretation for Next-Generation Sequencing Data
    Wang, Guohua
    Liu, Yunlong
    Zhu, Dongxiao
    Klau, Gunnar W.
    Feng, Weixing
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [40] Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery
    Corey Oses
    Cormac Toher
    Stefano Curtarolo
    MRS Bulletin, 2018, 43 : 670 - 675